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1 Review

In the previous lecture, we introduced Near-Neighbor Search and the motivating problem
of Efficient Search Engines. The brute force method of calculating similarity between the input
and all items is far too slow to be used in practice, so we explored alternatives using hashing.

In classical hashing, we define a hash function such that if x = y → h(x) = h(y) and
conversely if x ̸= y → h(x) ̸= h(y). However, this technique provides no assurance that
similar outputs will be mapped to similar values in the output space. In fact, modern day
hash functions are designed with the opposite effect (minor changes to inputs lead to major
variations of outputs) as a way to protect against sophisticated attacks.

In their seminal paper ”Similarity Search in High Dimensions via Hashing”, Gionis, Indyk,
and Motwani introduced Locality Sensitivity Hashing (LSH). They defined a whole new class
of hash functions (denoted sim) with the property that the probability of a collision between
two values directly correlate to the similarity of the respective items. In other words, sim(x, y)
is high → Pr(h(x) = h(y)) is high and sim(x, y) is low → Pr(h(x) = h(y)) is low. Conversely,
h(x) = h(y)→ sim(x, y) is high and h(x) ̸= h(y)→ sim(x, y) is low.

1.1 Jaccard Similarity

Before we go any further, we need to define the notion of similarity.
For demonstration purposes, we will restrict the values to strings and convert them into a set

of 3-grams (all contiguous 3-characters tokens). For example, amazon→ {ama,maz, azo, zon}
and amazing → {ama,maz, azi, zin, ing}.

For comparing two strings, we will calculate the Jaccard Similarity (cardinality of the in-
tersection divided by the cardinality of the union) over the 3-gram sets. For example:

J(amazon, amazing) =
|{ama,maz, azo, zon} ∩ {ama,maz, azi, zin, ing}|
|{ama,maz, azo, zon} ∪ {ama,maz, azi, zin, ing}|

=
|{ama,maz}|

|{ama,maz, azo, zon, azi, zin, ing}|
=

2

7

1.2 Minwise Hashing

How does this relate to similarity search? Let’s examine the relationship between Minwise
Hashing and Jaccard Similarity.

Claim: Pr(Minhash(S1) = Minhash(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= J

Proof : Let us consider a hash function U which is used to calculate the minwise hash of
the sets S1 and S2. Let e be the element that has the smallest hash value in S1 ∪ S2. It’s easy
to see that Minwise(S1) = U(e) iff e ∈ S1 and Minwise(S1) = U(e) iff e ∈ S1. However, it is
also possible for Minwise(S1) = Minwise(S2) = U(e) iff e ∈ S1 ∩ S2. If we say |S1 ∩ S2| = N
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and |S1 ∪ S2| = M , then there are M possible choices for e with N of which resulting in a

collision, so the probability of a collision is
N

M
= J .

2 Extensions of Minwise Hashing

2.1 Parity of Minwise Hashing

As demonstrated earlier, Minwise Hashing typically returns an integer. However, if we
reduce that integer to just a parity bit, we can still obtain information about strings S1 and
S2’s similarity. Let us define a parity function L such that L(A) = Minhash(A) % 2. Note
that if Minhash(S1) = Minhash(S2), the parity of minhash L(S1) and L(S2) is guaranteed to
be equal. If Minhash(S1) ̸= Minhash(S2), there is a 50% chance that L(S1) = L(S2). So, we
have:

Pr(L(S1)) = L(S2))) = J(S1, S2) + 0.5 ∗ (1− J(S1, S2)) = 0.5 ∗ (1 + J(S1, S2))

Using multiple independent hash functions, we can compute, say, 50 L(S1) and L(S2) values.
Based on how many L(S1) = L(S2), we can estimate the similarity between S1 and S2 (i.e.
J(S1, S2)) with a much lower storage cost compared to storing 50 integer values in Minwise
Hashing. 50 parity bits, in total, takes up 50/8 ≈ 7 bytes, which is less than the cost of storing
2 integers. Additionally, the storage cost does not depend on how heavy the n-gram set or the
length of the string is. The string can have 100, 1000, 10000 characters, but the storage cost is
the same for similarity estimation.

2.2 Maxwise Hashing

Other than taking the min, some implementation may choose to take the max. Since min
and max have the same probability distribution, taking the max should have identical sampling
effects.

2.3 One Permutation Hashing

Despite its many benefits, in industry practice, minwise hashing is not very desirable. Li et
al. (2012) states that pre-processing for a dataset containing 350,000 samples and 16 million fea-
tures can take up to 6000 seconds when 500 hash functions are used. In industrial applications,
the datasets are much bigger. Hence, the pre-processing can be much more expensive.

The inefficiency of minwise hashing comes from the fact that only the minimum element is
used after the algorithm scans all nonzero elements in a set. In response to the inefficiency, Li
et al. (2012) proposed one permutation hashing. The idea is to hash the strings using some
random Ui : Strings → N , divide the space [0, N ] into k bins and take the minimum of each.
This methodology allows sampling with 1

k as much pre-processing costs as the original min-wise
hashing.

To give an example. Consider S = {ama,maz, azo, zon, on.} and Ui : Strings → [0, 600).
Suppose Ui(S) = {153, 283, 505, 128, 292} and k = 4. We have four bins with identical size
[0,150), [150, 300), [300, 450), [450, 600). If we take the minimum of each, then the selected
elements are [128, 153, ⋆, 505]. Note that we have an empty bin denoted by ’⋆’. How to handle
the empty bins is the key of one permutation hashing.

Shrivastava & Li (2014) introduced a ”rotation” scheme that assigns new values to all the
empty bins. The idea is that for every empty bin, the scheme borrows the value of the closest
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non-empty bin in the clockwise direction (circular right hand side) added with offset C. In the
previous example, the ”rotation” scheme would take 505 + C to fill the empty ⋆.

3 Minwise Hashing vs Random Sampling

Technique: Pick some random words from two documents and compare them.
Claim: Minwise Hashing is significantly more accurate than Random Sampling.
Argument: We can view Random Sampling as asking a series of ”yes” or ”no” questions

on a document. Say you have a document on Machine Learning, and you want to know how
similar your document is to the other person’s document. You probably want to start by asking
questions like ”Does your document contain the word ’computer?’” If the answer is ”yes,” you
get some information, but if the answer is ”no,” you know close to nothing about the document.
Random Sampling gives you keywords from two documents, but if the keywords don’t match,
you get close to no information.

For Minwise Hashing, suppose the word “computer” is hashed to 128 and you get 128 when
you ask for min-hash from the document. You not only know the word “computer” is in the
document, you also know that document doesn’t contain any word that hashes to below 128.
This gives you much more information than Random Sampling. If the two documents have the
same min-hash, you know they are similar and contains no word that would hash to a lower
value. Even if the two documents’ min-hash values don’t match, the values themselves allow
for a drastic reduction in the search space.

4 LSH via Binning

In LSH, we want to create hash functions such that if |x−y| < δ for some small δ, h(x) = h(y)
with high probability. One way to achieve this is random binning.

Say we want a locality sensitive hash function h : [0, 100) → [0, 10). We could randomly
generate offsets o1, o2, ..., o9 s.t. E[o] = 10. The hash function h maps every number n ∈
[
∑i

k=1 ok,
∑i+1

k=1 ok] to i. For example, suppose o1 = 9 and o2 = 22. Then, every number
n ∈ [0, 9) is mapped to 0. Every number n ∈ [9, 22) is mapped to 1.

Notice that we use random binning instead of deterministic binning. This is because we
want both x + δ and x − δ hashed to the same value as x with high probability regardless of
x. If we use deterministic binning in the previous example and partition [0,100] into intervals
of identical length, we could get a hash function h(x) = x/10. Notice that if we take x = 10,
x′ = 9.99 is hashed to a different bin as x whereas x′′ = 15 is hashed to the same bin as x
although |x′ − x| < |x′′ − x|. We want to avoid this scenario where some x has deterministicly
bad performance by introducing randomness via random binning.

5 Search Engine using LSH

5.1 Overview

How do we build a search engine using LSH ? Modern search engines perform the task of
near-neighbor search. That is, identifying a set of data points that are “most similar” to the
query data point. Using LSH, we can easily query the ”most similar” data points in sublinear
time (i.e., no need to scan all data points).
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Suppose we have a data set RD. We can hash the data set using LSH and use the hash
values to index the data. Say we have two hash functions h1, h2 : RD → {0, 1, 2, 3}. We can
create a hash table with 42 = 16 entries. For each x ∈ RD, we compute h1(x) and h2(x), store
the pointer to x (x’s memory location) in bucket (h1(x), h2(x)). In the example below, the
orange item x has hash values h1(x) = 0, h2(x) = 1. Since 0 and 1 can be represented by 00
and 01 using bits, the pointer to x is put into bucket 0001.

When we want to query the items similar to q, we can directly go to the bucket indexed
by (h1(q), h2(q)) and return all the elements in the bucket. In the example below, if we want
to find elements similar to the orange item, we directly go to bucket 0001 and return all the
elements there. Since collision implies high similarity in LSH, we are guaranteed to return
elements most similar to q.

Figure 1: Near neighbour search illustration

5.2 Using Multiple Independent Hash Tables

5.2.1 Idea

In the previous example, we use two hash functions h1 and h2. In reality, we can use any
number of hash functions and any number of hash tables. In the example below, we use k hash
functions and L hash tables. For every query, we return the union of the L buckets.

Why do we use L buckets? Notice that if we have k = 10 hash functions for each table, the
probability that two items x and y land in the same bucket is sim(x, y)10. When sim(x, y) = 0.9,
Pr(Buckets(x) = Buckets(y)) = 0.35. There’s a good chance we might miss some candidates.
Hence, we use L hash tables to include more candidates. When we use L = 10 hash tables,
Pr(y is retrieved) = 1− (1− sim(x, y)10)10 = 1− (1− 0.910)10 = 0.986.

Figure 2: Near neighbour search with L independent hash tables

13-4



5.2.2 The LSH Algorithm

Algorithm 1: Preprocess Database(D, hash functions, hash tables)

Input : D, a data set.
hash functions, K ∗ L independent hash functions h11, h12 ... h1k, h21 ... hLk .
hash tables, L independent hash tables T1, T2 ... TL

Output: None.
1 for x ∈ D do
2 for i from 1 to L do
3 Put the pointer of x into Ti[h

i
1(x), h

i
2(x), ..., h

i
k(x)];

Algorithm 2: Query(q, hash functions, hash tables)

Input : q, a query.
hash functions, K ∗ L independent hash functions h11, h12 ... h1k, h21 ... hLk .
hash tables, L independent hash tables T1, T2 ... TL

Output: None.
1 S ← empty set;
2 for i from 1 to L do
3 S = S ∪ Ti[h

i
1(q), h

i
2(q), ..., h

i
k(q)];

4 Get the best elements from S based on similarity with q;

5.2.3 Analysis of K and L

As previously noted, K controls the quality of the bucket and L controls the failure prob-
ability (i.e. the probability that a similar item is not retrieved). The key is to find a balance
between K and L.

Let px = Pr(minhash(x) = minhash(q)) = Jaccard.

• pKx is the probability that x is in a bucket mapped by q in hash table 1.
• 1− pKx is the probability that x is not in a bucket mapped by q in hash table 1.
• (1− pKx )L is the probability that x is not in any of the L buckets. Or x is not retrieved.
• 1− (1− pKx )L is the probability that x is retrieved.

1 − (1 − pKx )L is a monotonic increasing function of px. Thus, the higher the px, the more
likely it is that x is retrieved. With K = 5 and L = 10, if px > 0.8, probability of retrieval
> 0.98; if px < 0.5, probability of retrieval < 0.2.

The general rule of thumb is to choose K ≈ log(n) and L ≈
√
n. Increases in K decreases

the candidates retrieved exponentially whereas increases in L increases the candidates linearly.
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