
COMP 480/580 — Probabilistic Algorithms and Data Structure Sept 1 2022

Lecture 4: Analysis of Hashing, Chaining and Probing
Lecturer: Anshumali Shrivastava Scribe By: Fangfei Yang

1 Universal hashing family

Definition 1 k-universal hashing family H for a set x1, x2, . . . , xk, and h from H, h(x1), h(x2), . . . , h(xk)
are independent random variables. Or, Pr (h(x1) = h(x1) = · · · = h(xk)) ≤ 1

nk−1

ax + b mod P → P (h(x) = h(y)) ≤ 1/N gives you 2-universal family, but for k-universal, we
need polynomial in k. That is to say, ax + b mod P → P (h(x) = h(y) = h(z)) ̸≤ 1/N2, while
a1x

2 + a2xb mod P → P (h(x) = h(y) = h(z)) ≤ 1/N2 = P (h(x) = h(y))× P (h(y) = h(z)).
And, akx

k + ak−1x
k−1 + · · ·+ a1x+ a0 mod P mod R is k-universal.

Thus, it’s harder to achieve higher independence as the cost for computation and memory increased.

2 Hash table collision

2.1 Chaining

Put m objects into array of n. The expected length of chain ≤ 1 +m− 1/m.

Definition 2 load factor α
α = m/n. (1)

Search time is 1 + α, in worst case it’s m.

Good case? logN .
What is the probability of existing a chain of size ≥ logN .

Theorem 1 For the special case with m = n, with probability at least 1 − 1/n, the longest list if
O(lnn/ ln lnn).

Proof Let Xi,k = indicatorofkey hash to slot k, Pr(Xi,k = 1) = 1/n
We can calculate the probability that a particular slot k receives > K, assuming independent.(

n
K

)
1/mk =

(
n
K

)
1/nk < 1/k! (2)

If we choose K = 3 ∗ lnn/ ln lnn, then K! > n2 and 1/k! < 1/n2. Thus the probability that any n
slots receives > K keys is < 1/n.

Definition 3 Power of two (multiple) choices The bad event happens with probability with p, happens
in both worlds (assume independent), is rare: p2, p3, . . . , pn. If we define the good event is not all world
has the bad event.

Use two hash functions, insert at the location with smaller chain.

Assignment Using m = n slots, with probability ar least 1− 1/n, the longest list if O(log log n).
Do independent things in parallel pick the best.

4: Analysis of Hashing, Chaining and Probing-1



2.2 Linear Probing

Probing sequence

• 0th probe = h(k) mod TableSize

• 0th probe = h(k) + 1 mod TableSize

• 0th probe = h(k) + 2 mod TableSize

• . . .

History

• 1954 linear probing introduced as subroutine for an assembler

• 1962 - n− independence the probing steps is constant

• 2005 - 5− independence the probing steps is constant

• 2007 - 2− independence the probing steps is constant

In practices, linear probingis one of the fastest general-purpose hashing strategies available.

Reasons

• Low memory overhead: array and a hash function

• Excellent locality: when collisions occur, we only search in adjacent location

• Great cache performance: a combination of the above of two

Analyze Analyzing linear probingis hard because insertion in any location is going to effect other
insertion with different hash result while chaining only rely on its own location k.

Assume a load factor α = m
n = 1/3.

• What happens to linear probing of α ≥ 1.

• Contrast with chaining

Definition 4 Region a region R of size m is consecutive set of m locations in the hash table.

An element q hashes into region R if h(q) ∈ R, though q may not be placed in R.
On expectation, a region of size 2s has at most 1/3 ∗ 2s elements hash to it.
It would be very unlikely if a region has twice as many as elements in it as expected. A region of

size 2s is overloaded if at least 2/3 ∗ 2s elements hash to it.

Theorem 2 The probability that the query element q ends up between 2S and 2S+1 steps from its
home location is upper-bounded by c · Pr[the region of size 2scentered on h(q) is overloaded] for some
fixed constant c independent of S.

Donating the Pr[the region of size 2scentered on h(q) is overloaded] as Pr[R2S > 2/3 ∗ 2S ], where
X2S is the random variable for the number of elements in any RS region.

Applying Markov’s inequality, we get:

Pr
[
R2S > 2/3 ∗ 2S

]
(3)

≤ E [R2S ]

2/3 ∗ 2S
(4)

=
2S ∗ α
2/3 ∗ 2S

(5)

=1/2 (6)

This gives us a bound for E[step] ≤
∑log(n)

S 2S ∗ c ∗ Pr[R2S > 2/3 ∗ 2S ] = O(n).

4: Analysis of Hashing, Chaining and Probing-2



3 Cuckoo Hashing

Worst case of both chaining and probing is O(n). Expected is O(1), for both insertion and searching. It
utilized two hash tables T1 and T2 with theirs own hash functions h1 and h2.

Cuckoo Hashing sacrifice insertions for worst case O(1) searching.

Algorithm 1 Cuckoo Hashing

Require: i = 1, 2, Hash function f1 and f2, Hash table T1 and T2.
function Insert(i, x)

y ← Ti[hi(x)]
Ti[hi(x)]← x
if y is not empty then

Insert(y, 3− i)
end if

end function
function Look-up(x)

a← T1[h1(x)]
b← T2[h2(x)]
if a is x then

return a
end if
if b is x then

return b
end if
return ∅

end function
function Deletion(x)

if T1[h1(x)] is x then
T1[h1(x)]← ∅

else if T2[h2(x)] is x then
T2[h2(x)]← ∅

end if
end function

However, this algorithm 1 could failed and there are two cases of it:

1. There is no enough space

2. The chain is too long

Both cases can be detected easily. And when the chain is too long (or infinitely), we just need to
pick up two new hash function f1, f2 and re-hash the whole table again.

This algorithm has an overall 20− 30% overhead compared to linear probing.

4: Analysis of Hashing, Chaining and Probing-3


