1 Universal hashing family

Definition $1 k$-universal hashing family H for a set $x_{1}, x_{2}, \ldots, x_{k}$, and h from $H, h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{k}\right)$ are independent random variables. Or, $\operatorname{Pr}\left(h\left(x_{1}\right)=h\left(x_{1}\right)=\cdots=h\left(x_{k}\right)\right) \leq \frac{1}{n^{k-1}}$
$a x+b \bmod P \rightarrow P(h(x)=h(y)) \leq 1 / N$ gives you 2 -universal family, but for k-universal, we need polynomial in k. That is to say, $a x+b \bmod P \rightarrow P(h(x)=h(y)=h(z)) \not Z 1 / N^{2}$, while $a_{1} x^{2}+a_{2} x b \bmod P \rightarrow P(h(x)=h(y)=h(z)) \leq 1 / N^{2}=P(h(x)=h(y)) \times P(h(y)=h(z))$.

And, $a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \bmod P \bmod R$ is k-universal.
Thus, it's harder to achieve higher independence as the cost for computation and memory increased.

2 Hash table collision

2.1 Chaining

Put m objects into array of n. The expected length of chain $\leq 1+m-1 / m$.
Definition 2 load factor α

$$
\begin{equation*}
\alpha=m / n \tag{1}
\end{equation*}
$$

Search time is $1+\alpha$, in worst case it's m.
Good case? $\log N$.
What is the probability of existing a chain of size $\geq \log N$.
Theorem 1 For the special case with $m=n$, with probability at least $1-1 / n$, the longest list if $O(\ln n / \ln \ln n)$.

Proof Let $X_{i, k}=$ indicatorofkey hash to slot k, $\operatorname{Pr}\left(X_{i, k}=1\right)=1 / n$
We can calculate the probability that a particular slot k receives $>K$, assuming independent.

$$
\begin{equation*}
\binom{n}{K} 1 / m^{k}=\binom{n}{K} 1 / n^{k}<1 / k! \tag{2}
\end{equation*}
$$

If we choose $K=3 * \ln n / \ln \ln n$, then $K!>n^{2}$ and $1 / k!<1 / n^{2}$. Thus the probability that any n slots receives $>K$ keys is $<1 / n$.

Definition 3 Power of two (multiple) choices The bad event happens with probability with p, happens in both worlds (assume independent), is rare: $p^{2}, p^{3}, \ldots, p^{n}$. If we define the good event is not all world has the bad event.

Use two hash functions, insert at the location with smaller chain.
Assignment Using $m=n$ slots, with probability ar least $1-1 / n$, the longest list if $O(\log \log n)$.
Do independent things in parallel pick the best.

2.2 Linear Probing

Probing sequence

- $0^{t h}$ probe $=h(k) \bmod$ TableSize
- $0^{\text {th }}$ probe $=h(k)+1 \bmod$ TableSize
- $0^{t h}$ probe $=h(k)+2 \bmod$ TableSize
- ...

History

- 1954 linear probing introduced as subroutine for an assembler
- 1962-n-independence the probing steps is constant
- 2005-5-independence the probing steps is constant
- 2007-2-independence the probing steps is constant

In practices, linear probingis one of the fastest general-purpose hashing strategies available.

Reasons

- Low memory overhead: array and a hash function
- Excellent locality: when collisions occur, we only search in adjacent location
- Great cache performance: a combination of the above of two

Analyze Analyzing linear probingis hard because insertion in any location is going to effect other insertion with different hash result while chaining only rely on its own location k.

Assume a load factor $\alpha=\frac{m}{n}=1 / 3$.

- What happens to linear probing of $\alpha \geq 1$.
- Contrast with chaining

Definition 4 Region a region R of size m is consecutive set of m locations in the hash table.
An element q hashes into region R if $h(q) \in R$, though q may not be placed in R.
On expectation, a region of size 2^{s} has at most $1 / 3 * 2^{s}$ elements hash to it.
It would be very unlikely if a region has twice as many as elements in it as expected. A region of size 2^{s} is overloaded if at least $2 / 3 * 2^{s}$ elements hash to it.

Theorem 2 The probability that the query element q ends up between 2^{S} and 2^{S+1} steps from its home location is upper-bounded by $c \cdot \operatorname{Pr}\left[\right.$ the region of size 2^{s} centered on $h(q)$ is overloaded $]$ for some fixed constant c independent of S.

Donating the $\operatorname{Pr}\left[\right.$ the region of size 2^{s} centered on $h(q)$ is overloaded] as $\operatorname{Pr}\left[R_{2^{S}}>2 / 3 * 2^{S}\right]$, where $X_{2^{S}}$ is the random variable for the number of elements in any R^{S} region.

Applying Markov's inequality, we get:

$$
\begin{align*}
& \operatorname{Pr}\left[R_{2^{S}}>2 / 3 * 2^{S}\right] \tag{3}\\
\leq & \frac{E\left[R_{2}\right]}{2 / 3 * 2^{S}} \tag{4}\\
= & \frac{2^{S} * \alpha}{2 / 3 * 2^{S}} \tag{5}\\
= & 1 / 2 \tag{6}
\end{align*}
$$

This gives us a bound for $E[s t e p] \leq \sum_{S}^{\log (n)} 2^{S} * c * \operatorname{Pr}\left[R_{2^{S}}>2 / 3 * 2^{S}\right]=O(n)$.

3 Cuckoo Hashing

Worst case of both chaining and probing is $O(n)$. Expected is $O(1)$, for both insertion and searching. It utilized two hash tables T_{1} and T_{2} with theirs own hash functions h_{1} and h_{2}.

Cuckoo Hashing sacrifice insertions for worst case $O(1)$ searching.

```
Algorithm 1 Cuckoo Hashing
Require: \(i=1,2\), Hash function \(f_{1}\) and \(f_{2}\), Hash table \(T_{1}\) and \(T_{2}\).
    function \(\operatorname{Insert}(i, x)\)
        \(y \leftarrow T_{i}\left[h_{i}(x)\right]\)
        \(T_{i}\left[h_{i}(x)\right] \leftarrow x\)
        if \(y\) is not empty then
            \(\operatorname{Insert}(y, 3-i)\)
        end if
    end function
    function LOOK-UP \((x)\)
        \(a \leftarrow T_{1}\left[h_{1}(x)\right]\)
        \(b \leftarrow T_{2}\left[h_{2}(x)\right]\)
        if \(a\) is \(x\) then
            return \(a\)
        end if
        if \(b\) is \(x\) then
            return b
        end if
        return \(\emptyset\)
    end function
    function Deletion \((x)\)
        if \(T_{1}\left[h_{1}(x)\right]\) is \(x\) then
            \(T_{1}\left[h_{1}(x)\right] \leftarrow \emptyset\)
        else if \(T_{2}\left[h_{2}(x)\right]\) is \(x\) then
            \(T_{2}\left[h_{2}(x)\right] \leftarrow \emptyset\)
        end if
    end function
```

However, this algorithm 1 could failed and there are two cases of it:

1. There is no enough space
2. The chain is too long

Both cases can be detected easily. And when the chain is too long (or infinitely), we just need to pick up two new hash function f_{1}, f_{2} and re-hash the whole table again.

This algorithm has an overall $20-30 \%$ overhead compared to linear probing.

