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1 Yahoo! Video Platform

The Yahoo! Video Platform hosts more than 20 millions of videos. A typical front-end server
that can only hold 500 distinct videos in RAM and 100,000 videos on disk. Moreover, engineers
at Yahoo! noticed that the total requests

unique requests ratio is low, with more than 30M requests for 800,000
distinct videos everyday. Therefore, it is likely that a new requested video would not be in the
cache (or even worse, not in memory!), which would dramatically increase the user’s waiting time
because memory access is orders of magnitude slower than cache access.

Goal: Find a routing algorithm that maps video filenames to server IDs with the following
requirements:

1. Stateless Addressing: When servers are added or deleted, routing between videos and
servers should re-configure automatically.

2. Efficiency: On every request, the request router must recompute the destination server
efficiently.

3. Load-balancing: Each server should handle a proportion of requests proportional to its
capacity (network bandwith, memory size, etc).

2 Consistent Hashing

2.1 Quick Recap

In the previous lecture, we have studied Consistent Hashing, a method that hashes both ma-
chine and objects in the same range. Below is a recap of this algorithm.

Details

• To insert a new item x, compute h(x) and traverse the range to the right until you find
the hash of a machine m1, and then assign x to that machine.

• To remove an element x, compute h(x) and traverse the range to the right until you find
the hash of a machine m1, and then remove x from that machine.

• When a machine is deleted, remove its hash from the range and move all objects mapped
to the deleted machine to the next machine to the right in the ring.

• When a machine mi is added, put h(mi) in the range, and map all objects between it
and the next machine to m1.

• Searching for the next machine to the right can be done in O(log(n)) with a binary
search tree that stores each machine’s hash in the same order they appear in the range.
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2.2 Issues with Consistent Hashing

From the Recap, it is clear that Consistent Hashing follows the Stateless Addressing. However,
the Efficiency and Load-balancing requirements are not respected because of those 2 issues:

1. Cascading Failure When a machine m1 fails, its previously assigned items are passed to the
next machine m2. This can overload m2 provoking its failure and the same effect propagates
to all the subsequent machines m3, m4, etc.

2. No Proportional Distribution In the case of an heterogeneous pool of servers, each server
mi has its own capacity ci. Consistent Hashing distributes the items uniformly among the ma-
chines, hence machines with lower capacity are overloaded and machine with higher capacity
are underloaded.

2.3 Proportional Consistent Hashing

In order to handle an heterogeneous pool of servers with different capacities, we introduce a modi-
fied version of Consistent Hashing, namely Proportional Consistent Hashing.

Idea: Proportional Consistent Hashing replicates servers in the range in proportion with their
capacity.

Example: Consider the following settings:

idm ci
m1 30

m2 10

m3 20

Table 1: Mapping between machine ids and capacities

For the pool of machines presented in Table 1, we will create 3 replicas of m3, 1 replica of m2

and 2 replicas of m3. Given that Consistent Hashing assigns items uniformly to machines, this
version of Consistent Hashing will load-balance items proportionally to each machine’s capacity.

Nevertheless, Proportional Consistent Hashing is still subject to Cascading Failure. In
a way, it makes it worse: if a server fails and the next server at its right has a lower capacity, then
it will almost certainly fail as well.

Again, we can refine the Proportional Consistent Hashing by adding k replicas for each
machine. This way, a machine is no longer responsible of a unique segment in the range but instead
of many small segments. As a result, when a machine fails, its items are uniformly assigned to the
other machines instead of only one machine. Thanks to this modification, we get fault tolerance at
the cost of a higher search time to find the next machine, from O(log(n)) to O(log(kn)) which is
a non-issue as log(kn) = log(k) + log(n) (asymptotically identical)

Combination of those two ideas makes it possible to use Consistent Hashing and also meet the
3 requirements for an efficient routing algorithm. In practice, Yahoo! engineers have proposed
another routing scheme called SPOCA.
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3 SPOCA

SPOCA is originally a paper from NSDI’ 2011 titled “Semantics of Caching with SPOCA: A State-
less, Proportional, Optimally-Consistent Addressing Algorithm”. The paper developed a series
of techniques for Yahoo! video content delivery service, including two subsystems Zebra and
SPOCA. The goal of SPOCA is to maximize the cache utilization of front-end servers thus mini-
mizing load to Yahoo! storage farms.

Idea: SPOCA takes as input the name of the requested content, hashes it and outputs the
server that will handle the request. Similar with Proportional Consistent Hashing, each front-
end server is assigned a portion of the hash space proportional to its capacity. If the hash re-
sults ends in an unassigned cell, the result of the hash function will be hashed again and again
(h(v), h(h(v)), h(h(h(v))), ...) until it lands in an assigned portion of the hash space. This processes
is demonstrated in Figure 2.

Figure 1: An example assignment of the SPOCA hash map

Failure handling: If some of the frontend servers fails unexpectedly, SPOCA will empty their
original hash spaces and reassign their content caches into other running servers in a balanced fash-
ion (i.e. by repeatedly calling h(v), h(h(v)), h(h(h(v))), ...), which shares the benefit of proportional
consistent hashing.

Elasticity: Operators could add in some new servers by simply mapping them to unassigned hash
spaces. Some of the content previously served by other servers will now be served by these new
servers (e.g. when h(v) is within the hash space of a new server while h(h(v)) is within the hash
space of a previous server). Interestingly, if they decide to remove these new servers in the future,
those content will once again go to their previous severs. This nice property is referred to as Elas-
ticity.

Popular content: For popular content which requires load balancing among multiple frontend
servers, SPOCA needs to be enhanced using a technique called popularity window, which dynam-
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ically determines the destination server based on the depth of previous requests. When the first
request arrives, SPOCA tries to map v to h(v) and keep this information in the popularity window.
Then upon the second request, instead of staring from h(v), SPOCA will look into h(h(v)) directly.
This will make sure popular content is fairly served among multiple servers.

4 Zebra System

Zebra is the other subsystem within the NSDI’ 2011 paper. Different from SPOCA, its main
functionality is to determine whether certain content should be directly routed to the home locale
or to the nearest locale.

Idea: Ideally, all content should be served by near locale for faster response, but the problem is
that we do not have infinite resource. Yahoo! has instead tried to put only “popular” contents
into nearest locale. bloom filter seems to be a good candidate because this appears to be a set
membership problem.

Challenges: Naively using bloom filter for recording popular contents is problematic. Since Bloom
Filter does not support deletion operations, bloom filter cannot delete videos that are no longer
popular. As new videos arrive over time, the allocated memory will gradually be exhausted.

Figure 2: Zebra uses multiple bloom filters and combines old ones as a unified filter.

Technical details: Instead of using a single bloom filter, Zebra uses a sequence bloom filters with
each one keeping track of a time interval. As time goes by, old bloom filters will be cleaned and
then used for new time intervals. To speed up the check, Zebra also combines older bloom filters
so that only two queries are needed for popularity checks.

5 Results

Since it has been deployed, SPOCA and Zebra has severely increased the cache rate compared
to Consistent Hashing. Figure 3 shows the evolution of the Cache Miss rate since SPOCA and
Zebra has been deployed on Yahoo! Video Platform. From a Cache Miss rate above 65%, SPOCA
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and Zebra has decreased it down to less than 10%. This translates into a $350 millions saving in
equipements over 5 years.

Figure 3: Evolution of hit cache since SPOCA deployment

There were, at the time, many concurrents to SPOCA such as CARP by Microsoft or CHORD
from the MIT. However, only SPOCA was able to provide good caching alongside the 3 requirements
of stateless addressing, efficiency and load-balancing.
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