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1 Heavy Hitters problem

In many applications of interest, we wish to find items that occur more than one would expect.
These might be called outliers or anomalies, or any other statistical terms. This idea is captured
by the heavy hitters problem—we suppose that there are only a few large or “heavy hitting”
elements in the stream, and we want to have a streaming algorithm that can identify them.

1.1 Motivating example (Google Trends)

Figure 1: Google Trend search for the terms “Football”, “Baseball”, and “American Football”

Google Trends. is a page by Google that tracks surgeon search queries around the world in
real time. Its goal is not only to serve queries but to serve queries fast. Google is able to do this
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by keeping track of so-called “heavy hitters”—search terms that make up a disproportionate
amount of traffic—Google can serve these faster if there were a way to cache them. On a normal
day, Google would process approximately 7 Billion searches if not more. It becomes obvious
that, given the diversity in queries and their sheer amount, we can not store them. In more
general terms, for these kinds of problems it becomes impossible to maintain a data structure
with size proportional to the input size, somehow we must come up with a data structure that
takes sublinear space.

2 Streaming

Streams are one of the most common ways that data is transmitted and are extremely similar to
how networks handle data. They are extremely difficult to work with however since you do not
know when the stream will end, and due to the large amount of data that can be transmitted.
In some cases it is possible for the amount of data being streamed to be in petabytes.

A stream is a model of computation that emphasizes space over all else. You only get to
look at the data once, or sometimes you can make two passes over the data. More formally,
we can define the stream as the sequence A = ⟨a1, a2, · · · , an⟩ of m items where each ai ∈ [m],
sot it takes log(m) to represent each ai. Notice that just counting the elements requires log(n)
space. The goal of a streaming algorithm is to compute a quantity g(A) . From now on let
ci = |{ai ∈ A, ai = j}| represent the number of items in the stream that have value j.

3 Majority and Heavy Hitters

One of the most common heavy hitters problem is that of finding the majority element. Consider
the array A of size m, you are told that it has a majority element, an element whose count
cj > n/2, the goal is find such j. Note that a majority element is not necessarily guaranteed to
exist. Also note that if the majority element does exist, it is unique.

Algorithm 1 Majority(A)

Require: c = 0 and l = ∅
for i = 1 to m do

if (ai = l) then
c = c+ 1

else
c = c− 1

end if
if (c ≤ 0) then

c = 1, l = ai
end if

end for
return l

Notice that this algorithm is correct just see that if the majority element exists:

• If (l = j), then c can be decremented at most < n/2, but c > n/2.

• If (l ̸= j), then c can be decremented, but incremented > n/2
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But if the majority element does not exist, any answer is OK.
We can formalize the heavy hitters problem, as follows, from an array A with size n, compute

all elements that occur at least n/k times for some reasonable k 1. Notice that finding the
majority element corresponds to setting k = 1− δ, for a small value δ > 0.

3.1 An Impossibility Result

Definition 1 There is no algorithm that solves the Heavy Hitters problems (for all inputs) in
one pass while using a sublinear amount of auxiliary space.

To see so, suppose that we set k = n/2, meaning we want to find all elements that appear
at least twice in the array. Suppose that the stream, we has seen so far contains the elements
x1, x2, · · · , xn, where each xi is different, each time we get a new elements y, our problems
reduces to determining whether y ∈ A?. (Notice that the simplest way to solve this is using a
hash table). We can easily see that we cannot answer each query “is y ∈ A?” without storing
all previous elements and thus using linear space. So if we throw out some elements, it becomes
impossible to answer queries for elements we already throw out!! Thus giving an intuition of
why solving the heavy hitter problems is very difficult. A more formal proof can be made for
all k using the Pigeonhole Principle.

3.2 Can we do better?

As we saw, the size of out data structure is bound to grow with the size of the stream, and
it is not always possible to beat a naive algorithm without some data-dependent assumptions.
That means we need to relax the problem. that relaxation is called ϵ-approximate heavy hitters
(ϵ-HH) presented in [4]. We require an array A of size n and user-defined parameter k and ϵ.
This algorithm will produce a data structure that follows the following rules:

1. Every value that occurs at least n/k times in A is in the list.

2. Every value in the list occurs at least n/k − ϵn times in A.

Notice that as ϵ → 0, then the ϵ-HH is equivalent to the heavy hitter problem. This means
that the space occupied by the algorithm grows by O(1ϵ ). Finally, an algorithm that follow
conditions (1) and (2) is a useful as the original heavy hitter problems but with much less
space consumption. One of such data structures, which is also elegantly simple, is called the
count-min sketch [1]. We remark to the reader that there are other structures that are based
on Algorithm 1 such as [2, 3] with the caveat that they are deterministic in nature or much
more complex.

4 Count-Min Sketch

The count-min sketch is a data structure similar to the bloom filter in that it uses d hash
functions and arrays of size R. The count-min sketch support two operations an increment
operation Inc(x) and a count operation Count(x) 2. The operation Count(x) if supposed to
return the count cx, in other words, how many times we have called Inc(x).

1You must think of n in the billions and k in the 1000s or 10000s.
2Notice that the same data structure supports bigger than one increments in that case you would define

Inc(x, ∆) for ∆ ≥ 0 Likewise, it can support deletions but we focus on the case where increments are +1 for
simplicity.
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Figure 2: The result of applying Inc(x) on the CMS data structure. Each row corresponds to
a hash function.

The count-min sketch has two parameters the number of hash functions d and the number
of buckets R. See Figure 2. The objective of the data structure is to compress the data, since
R ≪ n, but since this compression will come with errors (hash collisions), we need to add
independent trials (remember power of two choices) using d hash functions.

The final structure will be an array of d×R CMS counters each initialized at 0. The code
to apply the Inc operation is as follows

Algorithm 2 Inc Function

Require: h1, h2, ..., hd Hash functions, d×R CMS array, and x value to be hashed
for i = 1 to d do

CMS[i][hi(x)] + +
end for

To motivate the implementation of Count, notice that the biggest downside is that since
you are hashing to a range that is smaller than the total amount of unique data points, there
will be collisions. Since counters are never decremented this means that the total count for any
data point will be over what the true value is.

CMS[i][hi(x)] ≥ cx, (1)

where cx denotes the true count of item x. For a heavy hitters problem, this materializes into
three distinct cases:

• Lucky collisions: small counts collide with large counts. This causes us to overestimate
the heavy hitters, but only a small amount

• Irrelevant: small counts collide with other small counts. This gives a bad estimate of
small counts, but we are only interested in heavy hitters.

• Unlucky: elements with large counts collide with other elements that have large count.
This causes us to dramatically overestimate the count for each element.

We remark the count estimate CMS[i][hi(x)] can not underestimate the true count cx, but
it generally overestimates it.
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Algorithm 3 Count Function

Require: h1, h2, ..., hd Hash functions, d×R CMS array, and x value to be hashed.
return min (CMS[1][h1(x)],CMS[2][h2(x)], · · · ,CMS[d][hd(x)])

Notice that all error con the count-min sketch are one sided, one natural question to ask is
How large are the errors?. This will also allow us to have better intuition on how to set d and
R. But first let us see how this data structure relates to bloom filters.

4.1 Relation to the bloom filter

Hashing into a counter almost provided a way to keep track of how often things were seen, but
the chance of unfortunate collisions keeps it from being a valid solution. The simplest way to
achieve this, is to simply add more hashing functions and have an array for each function. This
is effectively creating a bloom filter that maps to counters. Where as a traditional bloom filter
will minimize the amount of memory needed, this version will minimize the over estimate. Here
we found a correspondence between the over-estimation of the count-min sketch and the bloom
filter’s property that it only suffers from false positives

4.2 Overestimation of Count-Min Sketch

Let us define the variables cx which denotes the true count of object x, likewise define Zi =
CMS[i][hi(x)] to represent our estimate of the count, and

∑
cx = Σ. Notice that Zi is a random

variable as long as our hash function are randomly sampled from an universal hash family and
independent. Considering the existence of collisions since R ≪ n, we can write our estimate as
follows

Zi = cx +
∑
y∈S

cy, (2)

where S = {y ̸= x : hi(y) = hi(x)} denotes the objects that collide with x in the i-th row. Recall
that if hi is at least 2-universal then for every x, y that are distinct Pr[hi(y) = hi(x)] ≤ 1/R.
We can rewrite Equation 2 as follows

Zi = cx +
∑
y ̸=x

cy1y, (3)

where 1y is the indicator variable that is equal to 1 if hi(y) = hi(x) and to 0 otherwise. Applying
linearity of expectation we get

E[Zi] = cx +
∑
y ̸=x

cyE[1y], (4)

Remember that for the indicator variable, its expectation is E[1y] = Pr[hi(y) = hi(x)] ≤ 1/R
which let us write

E[Zi] ≤ cx +
1

R

∑
y ̸=x

cy ≤ cx +
Σ

R
, (5)

We can translate this bound from one in expectation to one in probability using a concentration
inequality, in this case Markov’s. Let us define the quantity

Error = Zi − cx ≥ 0,
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as the amount of error made by our estimate of the count cx. This error has expected value
equal to E[Error] = Σ/R, which looks similar to the definition of ϵ-HH and allows to have
ϵ = 1/R. We would want that the probability that we overestimate the error by twice this
amount be less than 1/2 otherwise we will contradict Equation 5.

Pr[Error > 2ϵΣ] <
1

2
,

Pr[Zi > cx + ϵΣ] <
1

2

(6)

Assuming that the hash functions are chosen independently, we have

Pr[mindi=1Zi > cx + ϵΣ] =

d∏
i=1

Pr[Zi > cx + ϵΣ] <

(
1

2

)d

, (7)

which we can solve for d and obtain d = log2(
1
δ ) for any user specified probability δ. This means

that for δ = ϵ = 0.01 we need 6 or 7 hash functions and an array of barely over a 1000 which
does not at all depend on the size of the stream n. We finally remark that the space used by
the count-min sketch of O(2ϵ log2(

1
δ )), and that if we chose simple but universal hash function

the time of the operations Inc and Count is O(log2(
1
δ ))

5 How to identify Top-k?

When it turns out to be top-K heavy hitters, we need to consider the memory usage as well as
using heap structures to keep track on the result. The estimate cs is guaranteed in the range
cs < ĉs < cs +2ϵΣ. For example, cs = f ·Σ if s becomes a heavy hitter. We will need to choose
an ideal d such that the error can be limited with ϵ < f . High probability decays as 0.5d, and
thus d ∈ 4, 5 suffice for the general cases.

5.1 Memory Requirement

To manage the probability of unwanted errors, for any given string s the expect count is ĉs and
the probability of cs < ĉs < cs + 2ϵΣ is 1-δ for any given string s. The time complexity can be
expressed as O(1ϵ log(

1
δ )):

0.5d < δ

d · log(0.5) < log(δ)

d <
log(δ)

log(0.5)

d < −log(δ) = log(
1

δ
)

(8)

If the error probability in a given string is δ, than for N strings we have N · δ. In order to
keep the error within δ we choose δ = δ

N . So in the original notation O(1ϵ log(1δ )),
1
δ becomes N

δ
and then we derive the memory requirement O(1ϵ log(

N
δ )).The number of strings (N) is complied

under logarithm so there is exponentially less space needed.

5.2 Analysis & Turnstile Model of Stream

Furthermore, when we identify Top-K elements Min Heap of size k is used to update, evaluate,
and check if the estimation reaches the min of Top-K heap. If so we update the heap with
O(log(k)). In the worst case, the cost for all hash functions is d · log(k).
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An interesting application is the turnstile setting if we assume an N dimensional vector
V, O(N) space is unacceptable. Given a time stamp t, we are only able to see (i, δi), but by
hashing it d times and add δi to all has counters we may find a convenient method to handle
turnstile streaming as O(N) is common for most general problems, using power law input we
can make exponential improvements.
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