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1 Intro: Estimate an Area

Problem: Estimate the ratio of a (random) area in a square. We uniformly sample from the
region, and whether the sample belongs to the region.

Example: to estimate: ∫ 1

0
e−x2

dx

There are multiple ways to do this:

1. Pick x and y randomly in [0, 1] and check if it lies in the area.

2. Pick x and compute y = f(x).

3. Riemann Integral.

Those solutions are very different. The sampling solution is independent of the messiness
of the area. The Riemann Integral solution is not. E.g., a higher dimension problem.

2 How to Generate Distributions in Programs

We first need a source of randomness by assuming a uniform number generation.
To generate Normal Distribution, there are a few ways to do this:

1. We can add up a lot of uniform numbers.

2. We can convert our uniform number generator since we know how Normal Distribution
looks like. y = f(x).

Today’s lecture focus on the methods that generate new distributions from a known distri-
bution generator.

3 Inversion Method

Purpose: Generate random numbers from a given probability distribution.

Algorithm 1 Inversion Method

for i = 1 to N do
Draw a uniform random number:

Sample yi ∼ U [0, 1]
Transform to the desired distribution:

Compute xi = F−1(yi)
end for
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This method requires us to find the inverse of the Cumulative Distribution Function (CDF)
of the distribution F−1. This does not require what F is but only need F−1, but finding the
inverse may be as hard as sampling. This means that this method does not always work.
Proof:

Pr(u ≤ x)

=Pr(F−1(y) ≤ x)

=Pr(y ≤ F (x))

=F (x)

4 Rejection Sampling

Purpose: Generate samples from a distribution for which direct sampling is difficult.

Algorithm 2 Rejection Sampling

for i = 1 to N do
Loop:
Draw a sample:

Sample x ∼ g(x)
Draw a uniform random number:

Sample u ∼ U [0, 1]
Acceptance Check:
if u ≤ f(x)

M ·g(x) then
Accept x and Exit the loop.

else
Continue the loop (reject x and try again).

end if
end for

Assuming we have access to proposal distribution g, how can we sample from target distri-
bution f?

Constraint: ∃M such that f ≤ Mg. This means that if for some values x, g(x) = 0 while
f(x) > 0, we cannot use g as the proposal distribution.

Recursively, sample x ∼ g and u ∼ U [0, 1]. If u ≤ f(x)
Mg(x) , then return x, else continue the

loop.
Intuitively, if at certain x, g(x) is large while f(x) is small, then u ≤ is a very small number,

which will likely be rejected.
Changing the distribution by changing the acceptance / rejection condition.
The hardness is to pick optimal M and g. Ideally, we have to choose the smallest possible

M and g close enough to f . Otherwise, a large portion of sampling will be rejected.

5 Importance Sampling

Purpose: Estimate properties of a particular distribution, while only having samples gener-
ated from a different distribution than the distribution of interest.

15 Basic Sampling-2



Algorithm 3 Importance Sampling

for i = 1 to N do
Draw a sample from the proposal distribution:

Sample xi ∼ g(x)
Calculate weighted function value:

Compute F (xi) =
w(xi)f(xi)

g(xi)
end for
Estimation:

Î = 1
N

∑N
i=1 Fi

Importance Sampling is not a sampling method. It is an estimation method.
We want to sample from f(x), but we do not know what f(x) is.
If we want to estimate ∫

x∼f(x)
w(x)f(x) dx

w(x) is the weight of any g(x). This is the expected value of any g. Ex∼f(x)(w(x))

xn →
∑n

i=1 w(xi)
n . Sample x1, x2, . . . , xn ∼ g(x), 1

n

∑n
i=1[

w(xi)xf(xi)
g(xi)

] =
∫ w(x)f(x)

g(x) g(x) dx.
f(xi)
g(xi)

is the importance weight.
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