
COMP 480/580 — Probabilistic Algorithms and Data Structure Jan 24, 2019

Lecture 6

Lecturer: Anshumali Shrivastava Scribe By: Gaurav Gupta

1 Web Caching: Motivation

Suppose we wish to serve websites in response to requests. Some websites are popular and are
requested very frequently, while others are not. Instead of loading every website from the server,
we wish to identify popular websites and store (or cache) them locally to avoid web traffic and
communication overhead. If we recieve many repeat requests for a particular page, then we
want to store this page in our cache memory. Each time we store a webpage, we also want to
keep a signature of each component so that when the HTTP server updates the webpage, we
can update the cache. This type of system will save resources because the local server cache can
be used by many users. This arrangement is called web caching. As an example, suppose many
users from the Rice University network (or perhaps other users in Houston) visit the same page
on amazon.com. This page will be loaded into a web cache located in Houston rather than
loaded directly from Amazon each time.

In short, web caches result in less web traffic, less congestion, less communication,
and fewer dropped packets.

However, there are obvious challenges. Remembering the recently-accessed Web pages for
a large number of users will require a fast storage system, with efficient retrieval. The way to
efficiently implement such a system is using a shared, distributed cache implemented at a large
scale. That is, we need a performant cache that we can spread over multiple machines. This
is precisely the solution provided by Akamai, the first company to implement large scale web
caching. This also leads us to the next question of how to spread the web pages over a given
number of machines.

We can use hashing to arrive at a simple solution for this problem. We use the webpage
address as the key, we keep a reference to each machine as the value, and we set the hash table
size equal to the number of machines. For a webpage, say amazon.com, and a hash function h,
we store amazon.com using the machine associated with the hash table index h(amazon.com).
Unfortunately, this system is not efficient if a server crashes or if we need to add more servers.
Server crashes occur quite frequently and, and we regularly need to add new servers. Therefore,
our simple solution will not work.

One obvious for this problem is to change the hash function and reallocate all the keys
again. For example: say h(x) = x mod 12 is the hash function, addition or deletion of one
machine changes it to x mod 13 or x mod 11. Unfortunately, the reallocation takes O(n) time
which is infeasible. We will show that there is a better solution for this problem.

Problem: Find a hashing scheme such that we require the minimum number of changes
(reallocations) if we resize the table.

2 Consistent Hashing

The problem can be solved by hashing webpages not to machine IDs themselves but to a
variable-size space between the machine IDs. More formally, consider a hashing scheme that

6-1

hashes both web pages and machine IDs into the same range defined on a circular table. Refer
to figure 1 for a visual. Each machine accepts web pages whose hash values lie in the white
spaces to its left. In other words, to assign an object x to a machine, compute hi(x) and then
traverse the circular table in the clockwise direction until you find the first machine’s hash
hm(y). Then assign webpage x to machine y.

However, this system has slow assignment times. The assignment for this system includes
a search time (to traverse the circular table searching for a machine). To traverse the table,
we need to probe the total number of buckets between two machines. The time complexity
of this operation is linear in the number of machines. (It will be of the order of a fraction of
the circular table range). A better set of solutions to search/insert items and machines is as
follows.

Insert item x: Use Binary Search trees. Put the allocated indices of the servers in a
binary search tree. Update the tree as needed. Given h(x), we can find the successor (the
next machine in a counterclockwise direction) in log(n) time. If the item has no successor in
the BST then return the machine with the smallest hm value). Store x in the returned machine.

How to insert a new machine y?
Insert machine y: Given hm(y), find the successor of y in the BST (If it has no successor in
the BST then return the machine with the smallest hm value). Move all items whose value is
less than y from the returned machine to the newly inserted machine y.

How to delete an existing machine y?
Delete machine y: Find the successor of y in the BST (if it has no successor in the BST then
return the machine with the smallest hm value). Move all items in y to the returned machine.

How to delete an existing item x?
Delete item x: Find the successor of x in the BST (if it has no successor in the BST then
return the machine with the smallest hm value). Delete x from the returned machine.

3 Load analysis

Given m items (m webpages in case of web-caching) and n machines/servers, the expected load
of each machine is m/n. This means that, in expectation, the load is divided uniformly over
the machines. When a machine is added or deleted the expected load becomes m

n+1 and m
n−1

respectively.

3.1 Max load of a machine

Argument: With high probablity, no machine owns more than O(log n
n) fraction of the total

load.

Proof : Assuming the total load is 1 (in other words m = 1)
It is equivalent to prove that with probablity less than 1

n , there exists an interval of size 2log n
n

inside which no machine lands. In this case the load of the machine is more than log n
n .

6-2

Figure 1: (Left) We use a cyclic table structure. For illustration there are 232 − 1 partitions.
The webpages assigned to a machine are those that hash to the range on the anticlockwise side
of the machine’s hash value. (Right) Inserted S3, hence a part of the load is shifted from S0
to S3. (Refrence: Tim Roughgarden’s notes)

For an interval I of size 2log n
n , the probability that no machine lies in this interval is

p = (1− I)n (1)

p = (1− 2
log n

n
)n ≈ e−2 log n =

1

n2
(2)

If there are k = n
2log n equal sized disjoint intervals, the probability that no machine lies in

any one these intervals is

k⋃
1

p =
k⋃
1

1

n2
(3)

Using the probability union bound

k⋃
1

1

n2
≤

k∑
1

1

n2
(4)

k∑
1

1

n2
=

n

2log n
× 1

n2
≤ 1

n
(5)

or, with probbality ≥ 1− 1
n , every interval of size 2log n

n contains at least one machine.

Question: Can we also say no machine is underloaded with high probablity?
Answer: No. There is a high probability that at least one interval contains two machines. To
prove this, suppose the range is split equally into l intervals, each taking a fraction of 1/l of

6-3

the load. The probablty that no two of the n machines fall into same interval is

1× l − 1

l
× l − 2

l
....× l − (n− 1)

l
=

(l − 1)!

(l − n)!ln−1
=

(l)!

(l − n)!ln
(6)

This probablity decreases as n grows. For example, for l = 10000 and n = 100 the probablity
is 0.6085. Hence the probablity of two machines falling in the same interval is 0.3915.

Figure 2: The plot shows how the probablity of underloading varies as we increase n.

This phenomenon is famously known as the birthday paradox. In the previous example,
if we take l = 365 then we get the probability that no two people in a sample of n people share
a birthday. This value is much smaller than one would think, even for small n. For instance,
take n = 23 and observe that this probability is only 0.4927!

3.2 Reduce the variance of the workload

The expected load of a machine is m
n and the max load is O(m log n

n). We can reduce the
variance of workloads by creating multiple copies of each machine and hashing all of the copies.

If we create K copies (note: the hash value of each copy is different) of each machine, then
the total load is the sum of K i.i.d random variables. Let Y1, Y2, ...YK be the loads of all copies
of a machine y. The expected load of Yi is m

Kn and the expected total load of machine y (the
sum Y1 + Y2 + ...+ YK) remains the same:

E(Y) = E(Y1 + Y2 + ...YK) =
K∑
i=1

E(Yi) = K × m

Kn
=
m

n
(7)

However, the variance will decrease. This can be proven using the weak law of large numbers
from a previous lecture.

P (|
K∑
i=1

Yi − E(Y)| > ε) −→ 0 (8)

As k increases, the tail shrinks and the sum of the i.i.d random variable becomes sharply
concentrated around the mean. In other words, the variance decreses exponentially (by the
Chernoff bound).

6-4

Figure 3: An ilustration of hashing 4 copies of each machine. (Refrence: Tim Roughgarden’s
notes)

6-5

