Data Streams

- Data that are *continuously* generated by many sources at very *fast* rates
- Examples:
 - Google queries
 - Twitter feeds
 - Financial markets
 - Internet traffic
- We do not have complete information (e.g., size) on the entire dataset
- Convenient to think about data as *infinite*
- Question: “How do you make critical calculations about the stream using limited amount of memory?”
Applications

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday

- Mining click streams
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

- Mining social network news feeds
 - E.g., look for trending topics on Twitter, Facebook, etc.
Applications (cont’d)

- Sensor networks
 - Many sensors feeding into a central controller

- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies

- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

From http://www.mmds.org
One Pass Model

- Given a data stream \(D = x_1, x_2, x_3 \ldots \)

- At time \(t \), we observe \(x_t \)

- For analysis, observed \(D_t = x_1, x_2, \ldots, x_t \) so far
 (don’t know how many points we will observe in advance)

- We have a limited memory budget, i.e., \(\ll t \)

- Task: at any point of time \(t \), compute some function of \(D_t \)
 (i.e., \(f(D_t) \))

- What is an approach to approximating \(f(D_t) \), given \(x_t, x_{t-1}, \ldots \)?
Basic Question

- If we can get a representative *sample* of the data stream, then we can do analysis on it

- How to sample a stream?

- Sampling is . . .?
Sampling (example 1)

- Suppose we have seen x_1, \ldots, x_{1000}
- Memory can only store sample size of 100
- Task: sample 10% of the stream
- How?
Sampling (example 1)

- Suppose we have seen x_1, \ldots, x_{1000}
- Memory can only store sample size of 100
- Task: sample 10% of the stream
- How?
 - Take every 10th element
 - $q \sim \{1, 2, \ldots, 10\}$, take every $q + 1$ element
- Issues?
Sampling (example 2)

- Dataset:
 - # of unique elements = U
 - # of (pairwise) duplicate elements = $2D$
 - total # of elements: $N = U + 2D$

- Fraction of duplicates: $\alpha = \frac{2D}{U + 2D}$

- Take 10% sample and estimate α

- Questions:
 - What is the probability that a pair of duplicate items is in the sample?
 - What happens to the estimation?
Sampling From Stream

Task: sample s elements from a stream; at element x_t, we want:

- Every element was sampled with probability $\frac{s}{t}$
- We have s number of samples

Can this be accomplished? If yes, then how?

Let us think through this . . .
Reservoir Sampling

- Sample size s

- Algorithm:
 - observe x_t from stream
 - if $t < s$, then add x_t to reservoir
 - else with probability $\frac{s}{t}$:
 - uniformly select an element from reservoir
 - and replace it with x_t

- Claim: at any time t, any element in x_1, x_2, \ldots, x_t has exactly $\frac{s}{t}$ chance of being sampled
Reservoir Sampling - Proof by Induction

- Inductive hypothesis: after observing t elements, each element in the reservoir was sampled with probability $\frac{s}{t}$

- Base case: first t elements in the reservoir was sampled with probability $\frac{s}{t} = 1$

- Inductive step: element x_{t+1} arrives . . .

work on the board . . .
Weighted Reservoir Sampling

- Each element x_i has a weight $w_i > 0$

- Task: sample elements from the stream, such that:
 - at time t, every element x_i was sampled with probability
 $$\frac{w_i}{\sum_i w_i}$$
 - have s elements

- Reservoir sampling is special case ($w_i = 1$)
Weighted Reservoir Sampling

Solution by (Pavlos S. Efraimidis and Paul G. Spirakis, 2006)

- Observe x_i

- Sample $r_i \sim \mathcal{U}(0, 1)$

- Set score $\sigma_i = \frac{1}{w_i} r_i$

- Keep elements (x_i, σ_i) with highest s scores as sample
Weighted Reservoir Sampling

- Implementation considerations:
 - Use heap to maintain top scores \((x_i, \sigma_i)\); \(O(\log(s))\) time complexity
 - \(\sigma_i \in (0, 1) \Rightarrow\) top scores get closer to 1, which becomes hard to distinguish
Weighted Reservoir Sampling

Lemma: Let U_1 and U_2 be independent random variables with uniform distributions in $[0, 1]$. If $X_1 = (U_1)^{1/w_1}$ and $X_2 = (U_2)^{1/w_2}$, for $w_1, w_2 > 0$, then

$$\Pr[X_1 \leq X_2] = \frac{w_2}{w_1 + w_2}.$$

Partial proof:

$$\Pr[X_1 \leq X_2] = \Pr[(U_1)^{1/w_1} \leq (U_2)^{1/w_2}]$$

$$= \Pr[(U_1) \leq (U_2)^{w_1/w_2}]$$

$$= \int_{U_2=0}^{1} \int_{U_1=0}^{U_2^{w_1/w_2}} dU_1 dU_2 = \ldots = \frac{w_2}{w_1 + w_2}.$$