
COMP 642 — Machine Learning Apr 07, 2022

Lecture 22: Tiny ML

Lecturer: Anshumali Shrivastava
Scribe By: Aayush Chudgar, Ishtdeep Singh, Naman Mohindra, Nishant Satpathy

Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Tiny ML

TinyML is a field of study in Machine Learning and Embedded Systems that explores the
types of models you can run on small, low-powered devices like micro-controllers. It enables
low-latency, low power and low bandwidth model inference at edge devices. An edge device is
any piece of hardware that controls data flow at the boundary between two networks. Edge
devices fulfill a variety of roles, depending on what type of device they are, but they essentially
serve as network entry – or exit – points. Some common functions of edge devices are the
transmission, routing, processing, monitoring, filtering, translation and storage of data passing
between networks.

In a world where machine learning algorithms are becoming larger and more resource-
intensive, how does tinyML fit in? To put things in context, consider the chart below.

In recent years, machine learning models have grown exponentially—from less than 100
million parameters in 2018 to 530 billion parameters within the past five years to 2021! What’s
more, they’re using more energy than ever before—according to one estimate, the carbon foot-
print of a single training of BERT is enough to fly round trip between New York and San
Francisco. [1]

22: Tiny ML-1



Training and deploying modern machine learning algorithms clearly has significant resource
demands. Hence, most modern machine learning algorithms are deployed on relatively powerful
devices and typically have access to the cloud, where the bulk of resource-intensive calculations
take place. But bigger is not always better, and tinyML has an important role to play at the
smaller end of things.

TinyML is basically machine learning on devices that have a small amount of storage/compute
power. The need for TinyML arises from the fact that we need low latency, data privacy, low
energy consumption and low bandwidth. Since the model runs on the edge, the data doesn’t
have to be sent to a server to run inference. This reduces the latency of the output. Since the
model is running on the edge, your data is not stored in any servers. Finally, micro-controllers
consume very little power. This enables them to run without being charged for a really long
time.

2 Training Small Models

One of the most intuitive methods to implement tinyML is to train a small model and subse-
quently increase it’s accuracy by retraining, hyper-parameter tuning, training on more data,
using cross validation, etc. However, this method can only take you so far, you might not be
able to meet the desired accuracy, model may not be maintainable(when you get more data),
etc.

3 Pruning

It is well established that larger models are able to provide a better accuracy. Pruning is an idea
that at first creates a large model that achieves the required accuracy. Then try and decrease
the size (prune it) while trying to maintain the accuracy. Once the model has been pruned, this
new pruned model is trained again on the dataset and this is known as iterative pruning. This
is one of the most successful methods practiced in the industry. ML kind of works using the

greedy algorithm. The more data it has, the better it performs. The more complex the model
is, the better it performs, usually. Because of this, big complex neural networks are giving the
best accuracy in recent times. Smaller neural networks do achieve a decent accuracy but still
fall short when compared to bigger models. Linear models give the lowest performance when
there is a high amount of data available. On the other hand, when there is less data available,
linear models give the best performance when compared to neural networks. As we had less
data in the past, linear models worked best. They gave

• more accuracy

• faster speed

But now in the age of big data where datasets are in terabytes, we can use the power of
neural networks and other complex models to boost the accuracy and increase performance.

22: Tiny ML-2



How to shrink the model?
In a neural network, there are millions of parameters. We try to find the least significant

parameters out of these. We then remove all of these parameters. For example, the parameter
with value 0.00001 will be converted to 0 as it was not providing enough activation anyways.
In this way, a small fraction of parameters are dropped from the model.

After this, the model is trained again. The remaining parameters will get retrained and
change. Repeat until:

• you reach the memory budget, OR

• you reach the required accuracy.

The amount of sparsity for gradual pruning can be illustrated as a monotonic increasing
function. The target sparsity can be achieved by increasing the pruning step from step 0 to 100
which achieves a 90% sparsity, as shown in the figure below.

22: Tiny ML-3



In conclusion, pruning is a model compression technique that allows us to compress the
model to a smaller size with zero or marginal loss of accuracy. In short, pruning eliminates the
weights with low magnitude (That does not contribute much to the final model performance).
Both original and pruned model has the same architecture, with the pruned model being sparser
(weights with the low magnitude being set to zeros).[2]

4 Quantization

Quantization in Deep Learning refers to techniques which represents numbers with lower bit’s
than the standard 64 bit floating point precision, example 16 bit or even 8 bit numbers. This
reduction in precision helps in saving memory as a 64 bit number requires 4 times the memory
of a 16 bit number and 8 times that of an 8 bit number.

Quantization maps a floating point value x which has a range [α, β] (here α is the min value
of x and β is the max value of x) to xq which has a range [αq, βq] and usually

β − α ≤ βq − αq

which means that the range of the new interval is smaller than the range of the initial
interval. This is called quantization mapping [4]. Quantization has two operations, the first
which is the quantization process which just converts a number into its quantized form

xq = round(
x

c
− d)

where c and d are variables. The second process is the dequantization process which reverts
a quantized number into its approximated full precision part.

x = c(xq + d)

We can obtain c and d by solving a linear system of equations which then finally results in

c =
β − α

βq − αq

22: Tiny ML-4



d =
αβq − βαq

βq − αq

One drawback of quantization is that there is loss of information as the precision is lost
and only models can mostly do integer arithmetic due to the reduced range, but as we will see
ahead that a lot of the results of training quantized neural networks suggest that the loss is
negligible when compared to the degree of reduction in the model size. One good example of
a quantized model would be I - BERT [3]. This is a quantized version of BERT which uses
only integer based arithmetic. This technique approximates the non - linear operations such
as GELU, Softmax etc. They show a speedup of up to 4 times using INT8 when compared to
FP32.

5 Knowledge Distillation

This is a ’weird’ technique based on the principle that if you have a lot of high quality data, a
smaller machine learning model would be able to generate accurate results as well. This is an
example of a student-teacher model.

Knowledge distillation works by effectively training a bigger ML model, or the TEACHER,
with a given dataset. The model would generate predictions based on the given data. A new
dataset would be constructed which would combine the old data and the information generated
from the bigger model. This new dataset would be then fed to the smaller ML model, or the
STUDENT.

[5]

So how does this work? We know that a bigger model will generate results with high
accuracy. Hence, we will use this model to generate more information about the data, under
the assumption that the information would be fairly accurate. The data coupled with this
information would be of better quality. Hence we could make the trade off between quantity
and quality and provide a smaller quantity of high quality data to the smaller model with poor
accuracy and improve its performance.

A pseudo example could be as follows:
Let the original data be {xi, yi} where yi is basically 1 or 0. This data would be fed to

the bigger model with higher accuracy. The model, as its outcome, would generate probability
predictions for the two potential outcomes p1 and p2.

22: Tiny ML-5



{xi, yi} → {xi, [p1, p2]}

The new data generated would now be {xi, [p1, p2]} where instead of yi being the two
outcomes (0 and 1), it is the prediction probabilities of the two outcomes. This is data which is
being generated from the point of view of the bigger model. This data encodes more information
about the data itself and would increase the accuracy of the smaller model with lower accuracy.

References

[1] Giri. Why the big future of machine learning is tiny. https://highdemandskills.com/tinyml/,
Feb 2022.

[2] Kelvin. Model compression via pruning. https://towardsdatascience.com/model-
compression-via-pruning-ac9b730a7c7b, Nov 2020.

[3] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert:
Integer-only bert quantization. In International conference on machine learning, pages
5506–5518. PMLR, 2021.

[4] Lei Mao. Quantization for neural networks https://leimao.github.io/article/neural-
networks-quantization/, May 2020.

[5] Sundeep Teki. Knowledge distillation: Principles, algorithms, applications, Mar 2022.

22: Tiny ML-6


