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Disclaimer: These lecture notes are intended to develop the thought process and intuition in ma-
chine learning. The materials are not thoroughly reviewed and can contain errors.

1 Background of Word and Categorical Representation

In the discipline of Natural Language Processing (NLP), the first question we must address is word
representation [1]. Different natural languages have been established, however they are all discrete sets,
making it difficult to educate computers directly using these words. It is for this reason that ”word
representation” is essential. But how can we create a mapping or transformation mechanism that will
make it easier for computers to learn languages? We may use vector to represent each element in this
collection because each language is a discrete set. In addition, the input from other machine learning
models can provide us with intuition. Then, for word representation, people come up with two primary
techniques.

1.1 One-Hot Representation Introduction

One-hot encoding [2] provides people with intuition first. For each word or categorical value, they apply
one-hot encoding. For example, if the word space contains only three words, such as cat, dog, and pig,
the one-hot representation can be

cat = [1, 0, 0], dog = [0, 1, 0], pig = [0, 0, 1] (1)

Obviously, representing a word or category is very efficient and simple via one-hot method, but there
are three major drawbacks.
(1)High dimension

We used a three-dimensional vector to represent three words in the previous example. However, if
we need to represent millions of words, the dimension of each word vector can be quite big. It is difficult
to execute work in such a high dimension due to the curse of dimension.
(2) Discrete for each element

Because of one-hot encoding, a word vector’s elements can only be zero or one. As a result, it is
unable to convey sufficient information for the some NLP tasks.
(3) Local representation property

Because of the one-hot encoding property, only one element in each word vector can be one, while
the rest are all zero, implying that one non-zero element is responsible for all of the word’s information.
Furthermore, when the second and third limitations are combined, a new disadvantage emerges: it is
difficult to determine the degree of similarity between words. Because word vectors generated by one-
hot encoding are orthonormal to each other, the degree of similarity between two different vectors is
zero.

1.2 Distributed Representation Introduction

Given the shortcomings of One-hot representation, we should apply some constraints to obtain the trans-
formation function. To begin, these transformations should be injective functions, meaning that each
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element of the transformation’s codomain is the image of at most one element of the domain. Second,
they should be structure-preserving, which means that if two words are close in their original space,
they should be close in the new space as well[3]. As a result, a distributed representation approach
should have the following characteristics: (1)Relatively low dimension Distributed representation mod-
els should provide word vectors with less dimensions than one-hot representation. As a result, we don’t
need a lot of RAM to use these word vectors. (2)Each element is a real number In distributed repre-
sentation models, each element can be any real number instead of zero or one, which means they have
more combination methods to express different words. (3)Global representation property Because the
word vector has more than one non-zero element, each one can contribute to the expression of word
information.

2 One-Hot Representation

2.1 One-Hot encoding representation

The one-hot encoding method can be used to represent categorical values that cannot be reasonably
inputted into the model as numerical or text. Consider the case of zipcodes below.

[77005, 77006, 44056] = [1, 0, 0] (2)

Where for one sample from the dataset, its zip code is 77005. We would not want to represent the zip
codes as a numerical value, because then 77006 would be considered similar to 77005 by numerical
distance. This would make two different data points (one with 77005, the other 77006) more likely to
have the same assigned label, when that would not make sense for these two entirely different geograph-
ical locations. We want to consider the zip codes as entirely separate cases, thus we classify them as
categories. As noted in section 1.1, the same method can be used for text values.

2.2 Represent sentences via One-Hot representation

Sentences can also be ”tokenized” and broken down by each word, or subset of phrases. We go into
detail for different cases in these sections.

2.2.1 Bag-of-Words representation

We can create numerical vectors for each sentence or document and use a dictionary, or ”Bag-of-Words”
with multiple one-hot encodings combined. Each sentence can be represented by a vector, and each
value in this vector is a one-hot encoding for the corresponding word in the Bag-of-Words dictionary.
For instance, consider the example in Figure 1 [4]. The dictionary contains all of the words the doc-

Figure 1: Bag-of-Words Encoding, with Frequency

uments have, with each word in a set index. Each word in each document has a one-hot encoding
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frequency in the same indexes as the dictionary, indicating if the document has the observed word and
how many times it occurred. This Bag-of-Words can further be used in a method called Term Frequency-
Inverse Document Frequency (TF-IDF), which is based on Zipf’s Law or Power Law.

Figure 2: Power Law and Word Frequency Distribution

Zipf’s law asserts that the frequencies f of certain events are inversely proportional to their rank r.
The idea is that words that are very commonly used in language (ex. the, a , I) are not useful or important
for use in predicting labels for documents. As seen in Figure 2, the most significant words are towards
the middle of the distribution. We take this idea and then calculate the TF-IDF of each document.

Figure 3: TF-IDF Equation

The Term Frequency (TF) measures how frequently the word occurs in any one document. The
Inverse-Document-Frequency (IDF) up-weights the rare words across all documents, and is calculated
by taking the log of number of documents in the corpus divided by the number of documents in which
the word appears [7]. For example, if a word commonly appears across all documents (such as ”the”)
then it will have a IDF value of close to 0 because it is not going to help with separating the documents
into labels. The IDF value of each word is then multiplied by the TF for each document, and then the
TF-IDF value of that word for that specific document is obtained.

For the purposes of machine learning, each document in a corpus can be represented by a vector and
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the values in those vectors can be the TF-IDF score for every word across all documents. These TF-IDF
scores can be obtained from getting the Bag-Of-Word encoding vectors of each document and doing the
calculations on them from Figure 3. If we wanted to calculate similarity between documents, we could
take the cosine similarity of the TF-IDF vectors and use this to categorize the documents into similar
topics.

2.2.2 Bag-of-Phrases and n-gram

When we use one hot encoding, we might miss out on important information.
For example, consider:
D1 - Rice University
D2 - Stanford University
D3 - Rice Bowl

One hot encoding will consider D1 and D2 as similar as D1 and D3, but we know they are completely
different. Hence, n-gram is brought into picture.

Instead of words, we have a sequence of words represented in a set.

Assume a document: This is Rice University in Houston
The uni gram representation: {This, is, Rice, University, in, Houston}
2-gram representation: {This is, is Rice, Rice University, University in, in Houston}
So on and so forth for n-gram.

2.2.3 Character n-gram

Instead of using token for words, each character is a token by itself.

For example, when Googling ”iphone”, the user types ”ipone” instead. If we consider each word to
be a token, the typing mistake cannot be recognized.
Instead, of n-gram we can use character n-gram.

Character 3-gram representation.
iphone: {iph, pho, hon, one}
ipone: {ipo, pon, one}
Now there is a similarity of ”one” between the two sets.

These sets can be treated as vectors and used in one-hot encoding like in the method seen in Section
2.2.1.

3 Distributed Representation Methods

3.1 Word2Vec

We already have a corpus for word2vec, however it just consists of a few sentences with no labels.
From these sentences, we need to extract information (word vector). Assume this corpus is V =
(s1, s2, s3, s|V |), and there are several words W = (w1, w2, ..., wT ) in these sentences, where |V | sig-
nifies the corpus size and T specifies the number of different words in the corpus. From a probabilistic
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standpoint, we can consider each element in W to be a random variable and use maximum likelihood to
obtain the best estimated parameters for each wi. So, we should check the jointly probability:

P (w1:T ) = P (wt)P (context(wt)|wt) (3)

The equation implies that each word should be linked to its context. However, if the context is lengthy,
the calculation of the jointly probability should be also lengthy. As a result, we make use of the first
assumption.

Assumption I: only inside a certain range 2C (window size)., The context can play a role in deter-
mining the likelihood.

So, we can get
P (w1:T ) = P (wt)P (wt−C:t−1, wt+1:t+C |wt) (4)

In addition, we can get the (conditional) likelihood P (wt)P (wt−C:t−1, wt+1:t+C |wt), because P (wt)
is a constant in this equation, the likelihood can be simplified as P (wt−C:t−1, wt+1:t+C |wt). Since the
length of W is T , the jointly condition likelihood should be

L =
T∏
t=1

P (wt−C:t−1, wt+1:t+C |wt) (5)

Now, we need the second and the third assumption.
Assumption II: These conditional jointly distribution should be independent.
Assumption III: For a given t, each P (wi|wt) is identity identify distribution
We can get the average conditional log likelihood is

L ′ =
1

T

T∑
t=1

log((P (wt−C:t−1, wt+1:t+C |wt))

=
1

T

T∑
t=1

log(
∏

i∈[−C,C],i ̸==0

P (wi|wt))

=
1

T

T∑
t=1

∑
i∈[−C,C],i ̸==0

log(P (wi|wt))

Because in a machine learning model, we always care about how to minimize a loss function rather than
maximize a likelihood function, so we can do some changes for the average conditional log likelihood
function and get

Loss = − 1

T

T∑
t=1

∑
i∈[−C,C],i ̸==0

log(P (wi|wt)) (6)

We simply need to build a model for P (wi|wt) to derive the likelihood function for the loss function. In
fact, if we choose a word and a window size of 2C, the sequence in this window becomes irrelevant be-
cause the conditional probability is all that matters. Then we may represent this conditional probability
in a more generic way with P (WOutput|WInput).

Now that we know what the loss function is, our goal is to find the discrete random variable distri-
butions for each discrete random variable. As a result, we can use neural networks (see Figure 4 ) to
assist us in fitting these distributions. We should add a softmax layer at the end of the network because
the outputs are probabilities.
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Figure 4: Skip-gram Model Structure[5]

Suppose the weights between input layer and hidden layer is U , the weights between hidden layer
and output layer is V and the output of softmax layer is ∆ (all vectors in this manuscript are column
vectors), we can get

wT
i ∗ U ∗ V = ∆ (7)

, where wi denotes the i-th word vector and ∆i denotes the i-th output of softmax layer. If we use
one-hot representation to obtain our initial word vector, we can get

wT
i ∗ U ∗ V = wT

i ∗ (u1, u2, ..., u|N |) ∗ (v1, v2, ..., v|V |)

= uTi ∗ (v1, v2, ..., v|V |)

= (uTi v1, u
T
i v2, ..., u

T
i v|V |)

= (∆1,∆2, ...,∆|V |)

Finally, we can get

∆j =
exp(uTi vj)∑|V |
k=1 exp(u

T
i vk)

(8)

We now have the neural network for word embedding and the word vector weights U . This model is
known as skip-gram and is a subset of word2vec (the other one is called Continuous Bag of Words,
CBOW, see Figure 5). CBOW uses the center word to predict the contexts to predict the center
word, and Skip-gram utilizes the center word to predict the contexts to predict the center word.

The distinction between CBOW and Skip-gram is that Skip-gram takes a center word as input and
returns its context as output. CBOW, on the other hand, takes contexts as input and produces the center
word as output.
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Figure 5: CBOW Structure[6]
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