COMP 642 — Machine Learning Feb 17,2022

Lecture 12: Data Types 1: Documents with Embedding Models
Lecturer: Anshumali Shrivastava Scribe By: Hongyu Ni, Bo Wang, Xinna Pan, Chule Hou

Disclaimer: These lecture notes are intended to develop the thought process and intuition in ma-
chine learning. The materials are not thoroughly reviewed and can contain errors.

1 Background of Word Embedding

Words have meaning(s) associated with them. As a result, we can represent word tokens in a dense
vector space (few hundred real numbers), where the location and distance between words indicates how
similar they are semantically (See Figure 1). This representation is called word embeddings.

Italy

Canada Spain ; o
walked p . o
(] Turk;y .’ .’ Rome
- Ottawa Madrid Germany
o swam
walking ®

swimming [] China
‘ Tokyo P
Hanoi . 5
Beijing
Male-Female Verb Tense Country-Capital

Figure 1: Word Embeddings

The semantic relationship between different embedding vectors can also be illustrated by the fol-
lowing example:

Say that we have the embedding vectors of the word "king', "queen",
"man", and "woman". The resulting vectors of subtracting "queen"
from "king" and "woman" from "man" would be very similar direction-
wise since they both carry similar values for that Gender feature.

Ilkingll — Ilqueenll =~ Ilmanll — Ilwomanll
or equivalently,

"king" _ ||queen|| + "woman" = "man"

1.1 Embedding Models Introduction

Sequence models often have an embedding layer as their first layer. This layer learns to turn word index
sequences into word embedding vectors during the training process, such that each word index gets

12: Data Types 1: Documents with Embedding Models-1

mapped to a dense vector of real values representing that word’s location in semantic space (See Figure
2).

g ((0.236, -0.141, 0.000, 0.045),
the 1 n [0.006, 0.652, 0.270, -0.556],
T::;T"‘:;g 12,34, 1,5 15 [0.305, 0.569, -0.028, 0.496],
Zock mouse | 2 [7| L eSt L = [0.421, 0.195, -0.058, 0.477],
E [0.236, -0.141, 0.000, 0.045],
ran |3 3 [0.844, -0.001, 0.763, 0.201]]
up 4 %
clock |5 g [[0.236, -0.141, 0.000, 0.045],
The mouse .23 6 3 [0.006, 0.652, 0.270, -0.556],
ran down down | 6 1619 3 [0.305, 0.569, -0.028, 0.496],
5 [0.466, -0.326, 0.884, 0.007]]

Figure 2: Embedding Layer

The embedding Model is essentially the same as one-hot encoding. They both vectorize words from
the corpus, but one-hot only lets the computer know that the word exists. Embedding maps the one-hot
encoding vector to a new space.

1.2 Word Embedding

Existing machine learning methods often cannot process text data directly, so it is necessary to find a
suitable method to convert text data into numerical data, which leads to the concept of Word Embedding.
Word embedding (See Figure3), an early pre-training technique, is a general term for language models
and representation learning techniques in natural language processing (NLP). It refers to embedding a
high-dimensional space, whose dimension is the number of all words, into a continuous vector space
of much lower dimension. And each phrase is mapped as a vector on the real number domain, which
is also a distributed representation that each dimension of a vector has no practical meaning, while the
whole represents a concrete concept. Type of text representation:

Bag-of-words based on one-hot, tf-idf, textrank, etc.;

Topic models: LSA (SVD), pLSA, LDA;

Fixed representations based on word vectors: word2vec, fastText, glove;

Dynamic representation based on word vectors: ELMO, GPT, bert;

They are also the most commonly used text representations in the NLP field. The text is composed
of each word, while one-hot is the simplest word vector. But it comes with many issues like dimensional
disasters and semantic gap. For example, high computational complexity will be caused by constructing
a co-occurrence matrix and then using SVD to analyze the construction of word vectors. While early
research on word vectors usually comes from language models, such as NNLM and RNNLM, whose
main purpose is language models, with a by-product of word vectors.

2 Word2Vec

Word2vec is one of the standard word embedding models [[1]][2]. There are two architectures proposed
for word2vec: CBOW and Skip-Gram.

12: Data Types 1: Documents with Embedding Models-2

fox

cat
run ® o
chase
@ Mouse
® rabbit

Figure 3: Encode to Vector based on Meanings

INPUT PROJECTION QUTPUT INPUT PROJECTION OUTPUT

w(t+1) wi(t+1)

w(t+2) w(t+2)

cBOW Skip-gram

Figure 4: CBOW and Skip-gram

CBOW predicts a masked word using its context (fill in the blanks model). For each word, it learns
two vectors to represent the two roles that a word can perform - first, when it is present in the context of
the masked word, and second, when it is masked.

Let U = [uy,....,un]l € RV*P and V = [vy,...,vn]T € RVXP where N is the size of the
vocabulary, and D is the size of the word vector. U models the first role and is used to calculate the
context vector, c, given by

c= Y uy (M

i€[—b,b]—{0}

where b is the size of the context window and wj; is the index of each word (wyq is the index of
the masked word; the rest are the indices of the context words). V models the second role and learns
the masked word vector for w0, given by v, . The probability p of w0 to occur in the context of
{wp, .., w_1,w1,..,wp} is given by

p(wo | Wi_pp—{0}) x expvy c 2

12: Data Types 1: Documents with Embedding Models-3

When the context has only one word, the model can be simplified to use the current word x to predict
its next word y.(See Figure5)

Input layer Hidden layer Output layer
x; [o] ,/f”/fa Vi
$lo| T~ g oly,

X F
? O h;|0 O Y3
| > =g > |
X |0 hlS Ol
W= {wg} hN(:) Wiva={w';}
,-f/_j RH—M“"RE
X v IO ,_F:_,-f"'f/ x““\-_,\&_\‘ O yV

Figure 5: CBOW Model

The Skip-Gram model of word2vec is similar to CBOW.(See Figure 6) The key difference is that it
predicts the context words using the masked word.

12: Data Types 1: Documents with Embedding Models-4

g Output layer
O]
O y ¥
Input layer
g—Hidden layer 5
0 0
10 O
xX; [o Y2j
© ©
V-dim .
O]
o
O
q Yej
=
CxV-dim

Figure 6: Skip-Gram Model

By using a large corpus for model training, the weighted model from the input layer and hidden layer
can be generated. Although Word2Vec can generate the good result, the model still have some defects,
such as the model does not consider word order and dose not consider statistical full-text words.

12: Data Types 1: Documents with Embedding Models-5

3 New Model: Attention Word Embedding (AWE)

3.1 The AWE Model

{ hard, }
t

Key
Admission very ha
t t Value easy - happy -- hard ... competitiy
T
]

Cp Query

e &

Figure 7: AWE Model

We now explain AWE]3]], our proposed word embedding model that incorporates the attention mech-
anism. AWE augments the CBOW (continuous bag-of-words) of word2vec with the attention mecha-
nism in two different ways. First, we introduce two new matrices, a key matrix, K € RVXD') and a
query matrix, Q € R(VxD "), where N is the size of the vocabulary and D’ € Z. With the attention
mechanism, the context vector ¢ is not modeled as a simple sum in (1) but rather as a weighted sum of
context word vector embeddings

c= Z A, Uy 3)

i€[—b,b]—{0}

where a,,; is the attention weight of each context word vector u,,; calculated using the key matrix
K and the query matrix Q

aw;, = exp (Kwo qui) 4)

Second, we share the weights between the context word embedding matrix and the masked word
embedding matrix in our model, i.e., we set U = V. Sharing weights is a natural and intuitive choice,
since both matrices embed the meaning of a word in its vector representation, and the meaning of
the word remains the same irrespective of it occurring in the context window, or as the masked word.
In CBOW, the choice is to have two separate matrices, U and V, is justified as it leads to increase
in performance. However, in AWE, the intuitive choice to have U same as V works better and adds
interpretability to the model. Op of that, it has an added advantage. The number of parameters in AWE
are much less as compared to CBOW even though AWE has one more matrix than CBOW. The reason
is that the key matrix K € R(VxD ") and a query matrix, Q € R(NxD ") are much samller as compared
to the value matrix, V = [u1, ..., uy]? € RVXD,

12: Data Types 1: Documents with Embedding Models-6

3.2 GloVe Model

GloVe is called Global Vectors as the global corpus statistics are captured directly by the model. It is
an unsupervised word embedding method, word vector learning method. Glove is a global log bilinear
regression model. As the name suggests, the model uses the global features of the corpus. The co-
occurrence frequency matrix of words, and the optimization objective function is log-linear and solved
in the form of regression.

The number of co-occurrence of words is often not strictly proportional to their semantic relevance,
so the direct use of covariance to characterize the relevance between words is not effective, so the
authors characterize the relevance by introducing a third word, through the difference between words.
The differences were chosen to better determine the correlation between words by the number of co-
occurrence probabilities of two words with the same word.

4 Challenge

As we know, polysemy is a frequent phenomenon in our natural language, representing highly flexibility
and efficiency of different language. However, word Embedding can not solve this problem well.

Figure 8: Static Word Embedding

As shown in the figure above(See Figure 8), the polysemous word Bank’ has two common mean-
ings. But when Word Embedding encodes the word, it cannot distinguish them. Although the words
appearing in different contexts, the same word occupies the parameter space. So when trained with
a language model, the same ’bank’ will be predicted, no matter what kind of context passes through
word2vec model. And this leads that two different context information will be encoded to the same in
the word embedding space. Therefore, word embedding cannot distinguish the different semantics of
polysemy, which is a serious problem in NLP field.

The word vector obtained by word embedding cannot solve the problem of polysemy. Therefore,
dynamic representation methods based on language model are introduced, like ELMO, GPT and Bert.

Take ELMO(See Figure 9) as an example. The essential idea of is to use the language model to
learn the Word Embedding in advance. At this time, polysemous words still cannot be distinguished,
but when the Word Embedding is actually used, the word already has a specific context. Then you can
use the semantics of the context to adjust the Word Embedding, which will make it better represent
the specific meaning in this context. In summary, ELMO is an attempt of dynamically adjusting Word
Embedding according to the current context.

12: Data Types 1: Documents with Embedding Models-7

Figure 9: ELMo Network

References

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in
vector space,” arXiv preprint arXiv:1301.3781, 2013.

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” Advances in neural information processing systems,
vol. 26, 2013.

[3] S. Sonkar, A. E. Waters, and R. G. Baraniuk, “Attention word embedding,” arXiv preprint
arXiv:2006.00988, 2020.

[4] https://developers.google.com/machine-learning/guides/text-classification/step-3 Step 3: Prepare Your
Data

12: Data Types 1: Documents with Embedding Models-8

	Background of Word Embedding
	Embedding Models Introduction
	Word Embedding

	Word2Vec
	New Model: Attention Word Embedding (AWE)
	The AWE Model
	GloVe Model

	Challenge

