
COMP 642 — Machine Learning Jan 27, 2022

Lecture 6: Deep Learning

Lecturer: Anshumali Shrivastava
Scribe By: Chris Hager, Gafar Alli, Nonso Nwadialo, Yemi Dada

Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Evolution of Machine Learning – From Single Layer to Mul-
tilayer Perceptrons

In traditional ML techniques, the role of the domain expert was critical in feature selection.
Possessing the required knowledge provided the modeler with some intuition on which features
would affect the dependent variable, and which were redundant. The idea of neural networks
obviated the need for feature selection as the multiple layers learn more complicated and ab-
stract representations of the input data. In deep learning, the idea is to learn future levels
of increasing abstraction with minimum human contribution (Bengio 2009). In most complex
problems, there is no way to fully define the structures and inter-dependencies present in the
domain.

1.1 Artificial Neural Networks

Building blocks:

• Input Layer – number of neurons equals the number of input features.

• Hidden Layer – one or many hidden layers with variable number of neurons between input
and output layers. In general, each neuron in the hidden layer is connected to all neurons
in the adjacent layers (“fully connected”).

• Output Layer – number of neurons equals the number of target features.

Figure 1: Neural network architecture

6: Deep Learning-1



1An artificial neural network consists of a network of simple information processing units,
called neurons. The power of neural networks to model complex relationships is not the result
of complex mathematical models, but rather emerges from the interactions between a large set
of simple neurons. Figure 1 illustrates the structure of a neural network. It is standard to
think of the neurons in a neural network as organized into layers. The depicted network has
five layers: one input layer, three hidden layers, and one output layer. A hidden layer is just a
layer that is neither the input nor the output layer. Deep learning networks are neural networks
that have many hidden layers of neurons. The minimum number of hidden layers necessary to
be considered deep is two. However, most deep learning networks have many more than two
hidden layers. The important point is that the depth of a network is measured in terms of
the number of hidden layers, plus the output layer. In figure 1, the squares in the input layer
represent locations in memory that are used to present inputs to the network. These locations
can be thought of as sensing neurons. There is no processing of information in these sensing
neurons; the output of each of these neurons is simply the value of the data stored at the
memory location. Deep learning networks are neural networks that have many hidden layers of
neurons.

The circles in the figure represent the information processing neurons in the network. Each
of these neurons takes a set of numeric values as input and maps them to a single output value.
Each input to a processing neuron is either the output of a sensing neuron or the output of
another processing neuron. The arrows in figure 1 illustrate how information flows through the
network from the output of one neuron to the input of another neuron. Each connection in a
network connects two neurons and each connection is directed, which means that information
carried along a connection only flows in one direction. Each of the connections in a network
has a weight associated with it. A connection weight is simply a number, but these weights
are very important. The weight of a connection affects how a neuron processes the information
it receives along the connection, and, in fact, training an artificial neural network, essentially,
involves searching for the best (or optimal) set of weights

1.2 Neural Network Deep Learning as Feature Learning:

A well-known intuition about deep learning is that it finds more abstract and useful represen-
tations of a feature vector (X) that sheds redundancies, while retaining as much information
about the output vector (Y) as possible.

• Extracts important features by iteratively transforming the data, going deeper towards
meaningful patterns with each transformation

• The modeler does not need to select or encode features ahead of time

• Deep learning automatically learns features that matter. It is a part of the larger field of
work called ‘representation learning’

1.3 Forward Propagation

Before discussing the back-propagation algorithm, it is important to discuss how the neural
network calculates its output given a set of inputs. Forward propagation can be visualized as
a long series of nested equations. The deeper you go, the more abstract, the representations of
the input get.

1Deep Learning, John Kelleher, MIT Press Essential Knowledge Series 2019

6: Deep Learning-2



F (x) = A(B(C(x))))

Let’s assume we have a network architecture as shown in Fig.2 and our input data is a [i, j]
matrix where i equals the number of records and j equals the number of input features. Each
neuron in the input layer represents a [i, 1] vector of a specific feature (X1, X2).

Figure 2: Forward propagation across NN layers

The operations to get from input to output layer are as follows:

1. Multiply the input feature matrix [i, j] with the weights matrix w [j, n], where n equals
the number of neurons in the hidden layer. The resulting matrix has the dimensions [i,
n]. See Fig.3.

2. Pass this matrix through the activation function (A) to calculate the values for the neurons
in the hidden layer (H1, H2, H3).

3. Multiply the hidden layer matrix [i, n] with the weights matrix v [n, m], where m equals
the number of neurons in the output layer. The resulting matrix has the dimensions [i,
m].

4. Again, pass this matrix through the activation function (A) to calculate the values for
the neurons in the output layer (O1, O2).

In mathematical terms we can write the result of this forward propagation step, which is just
a series of matrix multiplications with element-wise application of an activation function (A), as:

A(v · (A(w ·X)))

6: Deep Learning-3



Figure 3: Example of matrix multiplication in Step 1

For more complex networks with more than one hidden layer and variable number of neurons,
we repeat steps 1 and 2 until we arrive at the output layer. All the layer matrices will have
dimensions of [i, k] where k equals the number of neurons of the current layer. The associated
weight matrices, to calculate values for the next layer, will have dimensions of [k, l] where l
equals the number of neurons in the next layer.
Adding bias to the network can be accomplished by just adding another feature with a constant
value across all records (see Fig.4). The bias is just another node in the layer and the weight
matrix will have an additional row for the bias weights. Bias neurons can be added at each
layer of the network.

Figure 4: Forward propagation with bias

Activation functions do not have to be the same for all layers. Typically, all hidden layers
use the same activation function (e.g. ReLu is a popular choice) but the activation function for
the output layer depends on the type of prediction required by the model. Classification models
require activation functions that transform the numerical values to probabilities (ranging from

6: Deep Learning-4



0-1, e.g. sigmoid, softmax) whereas any type of activation function can be used in regression
models.

Why do we need to add non-linearity to network through activation functions?

Figure 5: Neural network with non-linearity (σ)

As shown above, forward propagation is
nothing more than the weighted sum of the in-
puts which is equal to linear regression. If all
layers have linear activation functions, then
the entire network is just an accumulation
of linear regressions which results in a lin-
ear mapping of input to output. As a con-
sequence, the network ”collapses” to a sim-
ple input-output architecture with no hidden
layers. It follows that the network will not
be able to find a function that explains any
non-linear behavior of our data. Adding non-
linearity to the network brings us closer to the
goal of a “universal function approximator”.
In linear regression we tried to accomplish this
goal by feature engineering (increasing the di-
mensions of our input data to be able to fit a boundary between classes).

1.4 Back Propagation

It is a common misconception to think that the backpropagation algorithm is the whole learn-
ing algorithm for multi-layer neural networks. Backpropagation is simply the algorithm that
is used to calculate gradients for the parameters in each layer. Gradient Descent is the op-
timization algorithm that is used to train the model, and it needs gradients to be calculated
for each parameter before new values can be calculated. The gradients are supplied using the
backpropagation algorithm, relying heavily on the chain rule of calculus.

1.5 GPUs and Matrix Multiplication

Graphics Processing Units (GPUs) were developed originally to meet the computational needs of
algorithms for rendering computer graphics. The rapid and enormous growth in sophistication
of graphics applications such as computer games has resulted in the availability of GPUs that
have hundreds of processors and peak performance near a teraflop and that sell for hundreds of
dollars to a few thousand dollars. Although GPUs are optimized for graphics calculations, their
low cost per gigaflop has motivated significant research into their efficient use for non-graphics
applications. The effort being expended in this direction has long-lasting potential because the
widespread use of GPUs in the vibrant computer games industry almost ensures the longevity
of GPUs in other applications. GPUs have found favor in the field of neural networks as they
allow us perform multiplication of huge matrices at a fraction of the time and cost, compared
to using CPUs. The distributed nature of neural networks make them the perfect paradigm for
parallel processing.

6: Deep Learning-5


