
COMP 642 — Machine Learning Feb 8, 2022

Lecture 11

Lecturer: Anshumali Shrivastava
Scribe By: Chuyu Duan, Zeyu Yang, Sheng Cheng, Podshara Chanrungmaneekul

Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

Ensembles: Bagging and Boosting, XGBoost (Another Popular Classifier)

1 Bagging

1.1 Introduction

When we try to get a lower variance model, we can apply multiple models and then use their
average or the most voted result as the final result. And that’s called bagging, standing for
bootstrap aggregating.

Suppose we have M models and our dataset is X, then the prediction can be made as
follows:

y(X) =
1

M

M∑
m=1

ym(X)

And using h(X) to represent the true result, then each model can be expresses with their
error as follows:

ym(X) = h(X) + ϵm(X)

So, the average sum-of-square error is:

Em[(ym(X)− h(X))2] = Em[ϵm(X)2]

Then we can get the average error made by all of those models:

EAV G =
1

M

M∑
m=1

Em[ϵm(X)2]

On the other hand, the prediction made by our final model is 1
M

∑M
m=1 ym(x), so the ex-

pected error of final model is:

11-1

Efinal = E[(
1

M

M∑
m=1

ym(X)− h(X))2] (1)

= E[(
M∑

m=1

ym(X)− h(X)

M
)2] (2)

= E[(

M∑
m=1

ϵm(X)

M
)2] (3)

=
1

M2
E[(

M∑
m=1

ϵm(X))2] (4)

=
1

M2
(

M∑
m=1

E[(ϵm(X))2]) +
1

M2

M∑
i=1

M∑
j=1,j ̸=i

E[ϵi(X)ϵj(X)] (5)

(6)

Comparing with Equ 1.1, we can get
Efinal =

1
MEAV G + CorRelation

If we assume that the error of each model is independent, then this shows that the average
error of a model can be reduced by a factor of M through averaging M models. Even the
CorRealtion is not zero, we can still get an expected error no more than the averaged error of
the initial models.

1.2 Sample with replacement

To enhance the performance, we want our M different models have diverse predictions, which
implies they should get different test data.

One typical way is to generate new data set by sampling with replacement, as Figure 1
shows.

However, one disadvantage is that each model will now see part of the data. To be more
specific, only about 0.63 can be seen by each model.

A single data point will not be selected from a set of size N in any of N draws is (1−1/N)N .
In the limit of large N, this becomes 0.37, which means only 0.63 of the data points will be
selected[1]. Yet, one advantage is that those data out of bag can be used as test data, which is
a useful alternative to cross validation.

Figure. 1. Sample with replacement[2]

11-2

1.3 Advantages

The main advantage of bootstrap is that it prevents the ensemble from relying too much on
any individual training example, which enhances robustness and generalization. For example,
comparing Figure 2 and Figure 3, we see that omitting a single example from the training
set can have a large impact on the decision tree that we learn (even though the tree growing
algorithm is otherwise deterministic)[1].

Figure. 2. Decision surface induced a decision tree of depth 2 fit to the iris data, using just the
petal length and petal width features[1].

Figure. 3. Fit to data where we omit a single data point (shown by red star)[1].

11-3

By averaging the predictions from both of these models, we get the more reasonable pre-
diction model in Figure 4.

Figure. 4. Ensemble of the two models in figures 1 and 2[1].
This advantage generally increases with the size of the ensemble, as shown in Figure 5. (Of
course, larger ensembles take more memory and more time.)

Figure. 5. (a) A single decision tree. (b-c) Bagging ensemble of 10 and 50 trees. (d) Random
forest of 50 trees[1].

11-4

This is the case for decision trees, but not for other models, such as nearest neighbor clas-
sifiers. For neural networks, the story is more mixed. They can be unstable wrt their training
set. On the other hand, deep networks will underperform if they only see 63 percent of the
data, so bagged DNNs do not usually work well[1].

1.4 Random Forest

Bagging relies on the assumption that re-running the same learning algorithm on different sub-
sets of the data will result in sufficiently diverse base models. The technique known as random
forests tries to decorrelate the base learners even further by learning trees based on a randomly
chosen subset of input variables (at each node of the tree), as well as a randomly chosen subset
of data cases. It does this by modifying Equation 1 so the the feature split dimension j is
optimized over a random subset of the features, Si ⊂ {1, ..., D}[1].

Equation. 1[1].

For example, consider the email spam dataset in The book Elements of Statistical Learning,
2nd edition. Springer, 2009., on page 301. This dataset contains 4601 email messages, each of
which is classified as spam (1) or non-spam (0). The data was open sourced by George Forman
from Hewlett-Packard (HP) Labs.

There are 57 quantitative (real-valued) features, as follows:

• 48 features corresponding to the percentage of words in the email that match a given
word, such as “remove” or “labs”.

• 6 features corresponding to the percentage of characters in the email that match a given
character, namely ; . [! $ #.

• 3 features corresponding to the average length, max length, and sum of lengths of un-
interrupted sequences of capital letters. (These features are called CAPAVE, CAPMAX and
CAPTOT.)

11-5

Figure. 6. Preditive accuracy vs size of tree ensemble for bagging, random forests and gradient
boosting with log loss[1].

Figure 6 shows that random forests work much better than bagged decision trees, because
many input features are irrelevant. (We also see that a method called “boosting”, discussed in
the next section, works even better; however, this requires sequentially fitting trees, whereas
random forests can be fit in parallel[1].)

2 Boosting

Boosting is an ensemble learning method that combines a set of weak learners into a strong
learner to minimize training errors. In many cases, boosting can work better than bagging and
random forest fits trees that depend on each other to reduce the bias of the strong learner.

2.1 AdaBoost (Adaptive Boosting)

The core principle of AdaBoost is to fit a sequence of weak learners on repeatedly modified
versions of the data. The predictions from all of them are then combined through a weighted
majority vote (or sum) to produce the final prediction.

Initially, the weights of each boosting are set to be equal. For each successive iteration,
the sample weights are individually modified and the learning algorithm is reapplied to the
reweighted data. At a given step, those training examples that were incorrectly predicted
by the boosted model induced at the previous step have their weights increased, whereas the
weights are decreased for those that were predicted correctly.

As iterations proceed, examples that are difficult to predict receive ever-increasing influence.
Each subsequent weak learner is thereby forced to concentrate on the examples that are missed
by the previous ones in the sequence

11-6

Algorithm 1 Adaboost.M1, for binary classification with exponential loss

wi = 1/N
for m = 1 : M do

Fit a classifier Fm(x) to the training set using weight w
Compute errm on the training set
Compute αm = log[(1− errm)/errm]

Return f(x) = sgn[
∑M

m=1 αmFm(x)]

Figure. 7. Method of Ada boosting that aggregate multiple weak learners and combine them
to create a more accurate classifier

2.2 Gradient boosting

In gradient boosting, it trains many model sequentially. Each new model gradually minimizes
the loss function of the whole system using Gradient Descent method. The learning procedure
consecutively fit new models to provide a more accurate estimate of the response variable.

The principle idea behind this algorithm is to construct new base learners which can be
maximally correlated with negative gradient of the loss function, associated with the whole en-
semble. You can refer article “Learn Gradient Boosting Algorithm” to understand this concept
using an example.

Algorithm 2 Gradient boosting

Initialize f0(x) = argminF
∑N

i=1 L(yi, F (xi))
for m = 1 : M do

Compute the gradient residual using rim = −
[
∂L(yi,f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

Use the weak leaner to compute Fm = argminF
∑N

i=1(rim − F (xi))
2

Update fm(x) = fm−1(x) + Fm(x)

Return f(x) = fM (x)

11-7

2.3 XGBoost

XGBoost, which stands for “extreme gradient boosting”, is a very efficient and widely used
implementation of gradient boosted trees. In addition to the previous method, it adds a regu-
larizer on the tree complexity, it uses a second order approximation of the loss instead of just a
linear approximation, it samples features at internal nodes (as in random forests), and it uses
various computer science methods (such as handling out-of-core computation for large datasets)
to ensure scalability.

More specifically, XGBoost optimizes the following regularized objective function.

L(f) =
N∑
i=1

ℓ (yi, f (xi)) + Ω(f) (7)

where

Ω(f) = γJ +
1

2
λ

J∑
j=1

w2
j (8)

is the regularizer.
The loss is given by

Lm (Fm) =
N∑
i=1

ℓ (yi, fm−1 (xi) + Fm (xi)) + Ω (Fm) + const (9)

XGBoost optimize the objective function in a greedy recursive manner. That is, iteratively
split data according to gain for such a split.

gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

(HL +HR) + λ

]
− γ (10)

where GL =
∑

i∈IL gim, GR =
∑

i∈IR gim, HL =
∑

i∈IL him, and HR =
∑

i∈IR him. Thus we can
split the data as long as gain is large. The full algorithm for XGBoost is as follow.

Algorithm 3 XGBoost

Initialize f0(x) = argminF
∑N

i=1 L(yi, F (xi))
for m = 1 : M do

Compute the gradient using gim =
[
∂L(yi,f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

Compute the Hessian using him =
[
∂2L(yi,f(xi))

∂f(xi)2

]
f(xi)=fm−1(xi)

Use the weak leaner to computerFm = argminF
∑N

i=1
1
2him

[
− gim

him
− ϕ(xi)

]2
Update the model fm(x) = fm−1(x) + sFm(x)

Return f(x) = fM (x)

References

[1] Murphy, K.P., 2022. *Probabilistic machine learning: an introduction*. MIT press.

https://en.wikipedia.org/wiki/Bootstrap aggregating

11-8

