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Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Self and Semi-Supervised Learning

1.1 The definition of supervised learning

Supervised learning is the machine learning task of learning a function that maps an input to
an output based on example input-output pairs. It infers a function from labeled training data
consisting of a set of training examples. Actually, most of the machine learning like logistic
regression and neural network can be allocated into the category of supervised learning.

1.2 The definition of unsupervised learning

Unsupervised learning is a machine learning technique in which the users do not need to su-
pervise the model. Instead, it allows the model to work on its own to discover patterns and
information that was previously undetected. It mainly deals with the unlabeled data. The
simplest example is clustering. For example, a dataset for animals and there are a lot of varia-
tions among them that are not known. It can help us to know more about the data itself. For
example, we can use an auto-encoder to filter the noise from the image.

Figure 1: Example of Auto-encoders

18-1



1.3 The definition of semi-supervised learning

Semi-supervised learning is an approach to machine learning that combines a small amount of
labeled data with a large amount of unlabeled data during training. It seems to be something
between supervised learning and unsupervised learning. For example, you are given some
labeled data and unlabeled data. The task is supervised learning, which is to predict the Yi
given Xi. A key point in semi-supervised learning is about how we can better use the unlabeled
dataset.

Figure 2: Different types of machine learning

1.4 Process of semi-supervised learning

The first idea is to generate the pseudo label using the trained data, which is also called self-
learning or annotation. This means that we start with labeled data and implement supervised
learning and get a classifier. Then, we use this classifier to get high confidence predictions on
unlabeled data and put them into labeled dataset and continuously do that. Let me illustrate
the idea by the following example.

Given 100 samples of labeled data and 1,000,000 samples of unlabeled data. 1. Train
classifier F0 on 100 samples of labeled data. 2. Using the classifier F0 to train 1000 samples of
unlabeled data and optimized model and get F1. 3. Using F1 to train on another 1000 samples
of unlabeled data and continuously do that until the model does not change.

1.5 The potential problem with the semi-supervised learning

– We tell the model that the high confidence prediction on an unlabeled dataset is the actual
real label so that the model can change itself. Under this circumstance, if the initial confidence
prediction is wrong, the model will get worse after several iterations. – If the training data is
biased, the self-training process will reinforce bias. For example. If you have a lot of dog images
in labeled data, you are supposed to confidently predict dogs in the unlabeled dataset.
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2 Co-training

Co-training is a machine learning algorithm used when there are only small amounts of labeled
data and large amounts of unlabeled data. It is a semi-supervised learning technique that
requires two views of the data. It assumes that each example is described using two different
sets of features that provide complementary information about the instance. Ideally, the two
views are conditionally independent (i.e., the two feature sets of each instance are conditionally
independent given the class) and each view is sufficient (i.e., the class of an instance can be
accurately predicted from each view alone). Co-training first learns a separate classifier for
each view using any labeled examples. The most confident predictions of each classifier on the
unlabeled data are then used to iteratively construct additional labeled training data.

2.1 The loss function for co-training

The loss function for two different classifiers in co-training that need to be minimized is the
cross entropy loss of F1 on the labeled dataset plus the cross entropy loss of F2 on the labeled
dataset plus the disagreement on the unlabeled dataset. The knowledge that actually contribute
to the model training is those that the two classifiers make different predictions, and for those
which two classifiers make the same predictions, there is actually an issue that they may both
make the same mistakes.

3 HybridNet

When dealing with smaller datasets,however, the need for proper regularization methods be-
comes more crucial to control overfitting. An appealing direction to tackle this issue is to take
advantage of the huge number of unlabeled data by developing semi-supervised learning tech-
niques.There is a model called HybridNet which is designed by this thinking. It consists in a
“hybrid” auto-encoder with the feature extraction path decomposed into two branches.

Figure 3: Example of HybridNet architecture

The top branch encoder, of parameters Wc, is connected to a classification layer that pro-
duces class predictions while the decoder from this branch is used to partly reconstruct the
input image from the discriminative features, leading to x̂c. Since those features are expected
to extract invariant class-specific patterns,information is lost and exact reconstruction is not
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possible. To complement it, a second encoder-decoder branch of parameters Wu is added to
produce a complementary reconstruction x̂u such that the sum x̂ = x̂c+ x̂u is the final complete
reconstruction.

During training, the supervised classification cost impact Wc while an unsupervised recon-
struction cost is applied to both Wc and Wu to properly reconstruct the input image. The main
assumption behind HybridNet is that the two-path architecture helps in making classification
and reconstruction cooperate. To encourage this, additional costs and training techniques is
applied, namely a stability regularization in the discriminative branch and a branch comple-
mentarity training method.

Figure 4: General description of the HybridNet framework

As we have seen, classification requires intra-class invariant features while reconstruction
needs to retain all the information. To circumvent this issue, HybridNet is composed of two
auto-encoding paths, the discriminative path (Ec and Dc) and the unsupervised path (Eu and
Du). Both encoders Ec and Eu take an input image x and produce representations hc and hu,
while decoders Dc and Du take respectively hc and hu as input to produce two partial recon-
structions x̂c and x̂u. Finally, a classifier C produces a class prediction using discriminative
features only: ŷ = C(hc). Even if the two paths can have similar architectures, they should
play different and complementary roles. The discriminative path must extract discriminative
features hc that should eventually be well crafted to perform a classification task effectively, and
produce a purposely partial reconstruction x̂c that should not be perfect since preserving all the
information is not a behavior we want to encourage. Consequently, the role of the unsupervised
path is to be complementary to the discriminative branch by retaining in hu the information
lost in hc. This way, it can produce a complementary reconstruction x̂u so that, when merging
x̂u and x̂c, the final reconstruction x̂ is close to x. The HybridNet architecture, visible on Fig.
2, can be described by the following equations:

hc = Ec(x) x̂c = Dc(hc) ŷ = C(hc)

hu = Eu(x) x̂u = Du(hu) x̂ = x̂c + x̂u

Note that the end-role of reconstruction is just to act as a regularizer for the discriminative
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encoder. The main challenge and contribution is to find a way to ensure that the two paths will
in fact behave in this desired way. The two main issues that we tackle are the fact that we want
the discriminative branch to focus on discriminative features, and that we want both branches
to cooperate and contribute to the reconstruction. Indeed, with such an architecture,we could
end up with two paths that work independently: a classification path ŷ = C(Ec(x)) and a
reconstruction path x̂ = x̂u = Du(Eu(x)) and x̂c = 0. Both of those issues could be addressed
through the design of the architecture of the encoders and decoders as well as an appropriate
loss and training procedure.
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