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Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Graph

1.1 Definition

A graph is a data structure that consists of the following two components:

1. A finite set of vertices also called as nodes.

2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because
(u, v) is not the same as (v, u) in case of a directed graph(di-graph). The pair of the form
(u, v) indicates that there is an edge from vertex u to vertex v. The edges may contain
weight/value/cost.

Graphs are used to represent many real-life applications: Graphs are used to represent networks.
The networks may include paths in a city or telephone network or circuit network. Graphs are
also used in social networks like linkedIn, Facebook. For example, in Facebook, each person is
represented with a vertex(or node)[4]. Each node is a structure and contains information like
person id, name, gender, and locale. Following is an example of an undirected graph with 5
vertices.

Figure 1: Graph

1.2 Representation

The following two are the most commonly used representations of a graph.
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1. Adjacency Matrix

2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List. The choice of
graph representation is situation-specific. It totally depends on the type of operations to be
performed and ease of use.

1.2.1 Adjacency Matrix

Adjacency Matrix is a 2D array of size V ∗V where V is the number of vertices in a graph. Let
the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex
j. Adjacency matrix for undirected graph is always symmetric. Adjacency Matrix is also used
to represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i to vertex j
with weight w. In case of an undirected graph, we need to show that there is an edge from
vertex i to vertex j and vice versa. In code, we assign adj[i][j] = 1 and adj[j][i] = 1 In case of a
directed graph, if there is an edge from vertex i to vertex j then we just assign adj[i][j]=1.
The adjacency matrix for the above example graph is:

Figure 2: Adjacency Matrix

Pros: Representation is easier to implement and follow. Removing an edge takes O(1) time.
Queries like whether there is an edge from vertex u to vertex v are efficient and can be done
O(1).

Cons: Consumes more space O(V 2). Even if the graph is sparse(contains less number of
edges), it consumes the same space. Adding a vertex is O(V 2) time. Computing all neighbors
of a vertex takes O(V ) time (Not efficient).

1.2.2 Adjacency List

An array of lists is used. The size of the array is equal to the number of vertices. Let the array
be an array[]. An entry array[i] represents the list of vertices adjacent to the ith vertex. This
representation can also be used to represent a weighted graph. The weights of edges can be
represented as lists of pairs. Following is the adjacency list representation of the above graph.
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Figure 3: List Adjacency

Pros: Saves space O(|V |+ |E|). In the worst case, there can be C(V, 2) number of edges in
a graph thus consuming O(V 2) space. Adding a vertex is easier. Computing all neighbors of a
vertex takes optimal time.

Cons: Queries like whether there is an edge from vertex u to vertex v are not efficient and
can be done O(V ).

In Real-life problems, graphs are sparse(|E| << |V |2). That’s why adjacency lists Data
structure is commonly used for storing graphs. Adjacency matrix will enforce (|V |2) bound on
time complexity for such algorithms.

2 PageRank Algorithm

2.1 What is PageRank

The Internet can be regarded as a graph, where nodes and edges possess attributes. PageRank
is an algorithm created by Google to rank web pages. It is a link analysis algorithm of graphs.
It calculates the importance of the page and assigns different weights to each inbound. The
more important the page provided by the link, the higher the inbound. The importance of the
current page is determined by the importance of other pages. After combining all other factors
such as the title and the keywords, Google uses PageRank to adjust the results, so that those
pages with more importance can have higher ranking in the search results.

2.2 How PageRank works

For a certain Internet web page A, the calculation of PageRank of A is based on the following
two basic assumptions:

1. Quantity assumption: In the Web graph model, if a page node receives more incoming
links from other web pages, the page is more important.

2. Quality assumption: The quality of inbound links pointing to page A is different. High-
quality pages will pass more weight to other pages through links. So the more high-quality
pages point to page A, the more important page A is.

2.2.1 Simplified PageRank Algorithm

Let us take an example to illustrate how simplified PageRank calculates[5]. Suppose there are
4 web pages A, B, C, D in total. The link information between them is shown in the Figure 4.

The influence of a web page can be represented as the sum of the weighted influence of all
inbound pages, expressed as

PR(u) =
∑
v∈Bu

PR(v)

L(v)
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Figure 4: Example of Simplified PageRank

Here u is the page to be evaluated, and Bu is the set of incoming links of page u. For any
page v in the inbound link set, the influence it can bring to u is its own influence PR(v) divided
by the number of outlinks of v. This means that the page v distributes the influence PR(v)
evenly. Then count all pages v that can bring links to u, and the sum is the influence of page u,
which is PR(u). In this example, A has three outgoing links to B, C, and D respectively. Then
when the user visits A, the possibility of jumping to B, C or D is 1/3. B has two outgoing
links, which are linked to A and D, and the jump probability is 1/2. In this way, we can get
the transition matrix M of the four pages A, B, C, and D:

M =


0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0


We assume that the initial influences of the four pages A, B, C, and D are the same.

w0 =


1/4
1/4
1/4
1/4


After the first transfer, the influence of each page becomes w1.

w1 = Mw0 =


0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0



1/4
1/4
1/4
1/4

 =


9/24
5/24
5/24
5/24


Then we calculate w2 = Mw1, until the influence of wn does not change after the nth

iteration. Finally the weight can converge to (0.3333, 0.2222, 0.2222, 0.2222). It corresponds to
the influence of the four pages A, B, C, and D in the final balanced state. We can see that
page A has more weights than other pages, which means the PR value is higher. Pages B, C,
and D have equal PR values.

2.2.2 General PageRank Algorithm

In the calculation of simplified PageRank, there are two possible problems.

1. Rank Leak: As shown in Figure 5, if a page does not have a outbound link, it is like a
black hole, absorbing the influence of other pages without releasing it. This will eventually
cause the PR value of other pages to be 0.
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Figure 5: Example of Rank Leak

2. Rank Sink: As shown in Figure 13, if a page has only outbound links and no inbound
links, the PR value of the page will become 0 as there is no V in the formula.

Figure 6: Example of Rank Sink

In order to solve problems of rank leak and rank sink in the simplified model, Larry Page
proposed the random walking model of PageRank[1]. He assumed that users do not always
visit pages by jumping links. There is also a possibility that no matter which page they are
currently on, they may visit any other page. For example, the user directly enters the URL to
visit other pages. So he defined a damping factor d, which represents the probability of users
accessing the Internet by jumping the link. Usually, it can take a fixed value of 0.85, and 1− d
means that the user does not access the web pages through the jump link, such as entering the
URL directly. Then the formula of calculating PageRank becomes:

PR(u) =
1− d

N
+ d

∑
v∈Bu

PR(v)

L(v)
,

where N is the total number of web pages. Then we can iterate the weight calculation of web
pages with the damping factor d. Through mathematical theorems, it can be proved that the
final PageRank random walking model can converge. This means that we can obtain a stable
and normal PR value.

3 Graph Neural Network

3.1 What is GNN?

A graph neural network (GNN) is a class of artificial neural networks for processing data that
can be represented as graphs.
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In the more general subject of ”geometric deep learning”, certain existing neural network
architectures can be interpreted as GNNs operating on suitably defined graphs. Convolutional
neural networks, in the context of computer vision, can be seen as a GNN applied to graphs
structured as grids of pixels. Transformers, in the context of natural language processing, can
be seen as GNNs applied to complete graphs whose nodes are words in a sentence[2].

The key design element of GNNs is the use of pairwise message passing, such that graph
nodes iteratively update their representations by exchanging information with their neighbors.
Since their inception, several different GNN architectures have been proposed, which imple-
ment different flavors of message passing, started by recursive or convolutional constructive
approaches. As of 2022, whether it is possible to define GNN architectures ”going beyond”
message passing, or if every GNN can be built on message passing over suitably defined graphs,
is an open research question.

Relevant application domains for GNNs include social networks, citation networks, molec-
ular biology, chemistry, physics and NP-hard combinatorial optimization problems.

3.2 The architecture of GNN

In graph theory, we implement the concept of Node Embedding. It means mapping nodes to
a d- dimensional embedding space (low dimensional space rather than the actual dimension of
the graph), so that similar nodes in the graph are embedded close to each other.

Our goal is to map nodes so that similarity in the embedding space approximates similarity
in the network.

Let’s define u and v as two nodes in a graph.
xu and xv are two feature vectors.
Now we’ll define the encoder function Enc(u) and Enc(v), which convert the feature vectors

to zu and zv.

Figure 7: A simple exple

The encoder function should be able to perform :
Locality (local network neighborhoods) Aggregate information Stacking multiple layers

(computation) Locality information can be achieved by using a computational graph. As shown
in the graph below, i is the red node where we see how this node is connected to its neighbors
and those neighbors’ neighbors. We’ll see all the possible connections, and form a computation
graph.

By doing this, we’re capturing the structure, and also borrowing feature information at the
same time.
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Figure 8: A simple exple

Once the locality information preserves the computational graph, we start aggregating. This
is basically done using neural networks.

Figure 9: A simple exple

Neural Networks are presented in grey boxes. They require aggregations to be order-
invariant, like sum, average, maximum, because they are permutation-invariant functions. This
property enables the aggregations to be performed.

Training can be unsupervised or supervised[3]:
Unsupervised training: Use only the graph structure: similar nodes have similar embed-

dings. Unsupervised loss function can be a loss based on node proximity in the graph, or
random walks. Supervised training: Train model for a supervised task like node classification,
normal or anomalous node.

3.3 How GNN works

The basic idea behind GNNs is to recursively update the node features by aggregating in-
formation from their neighboring nodes. The process is typically performed through a series
of message passing steps, where each node sends a message to its neighbors, which are then
aggregated to produce an updated feature representation for each node.

The message passed from node i to node j is typically a function of the features of node i
and the edge between i and j, and can be defined as:

mij = M(hi, hj , eij),

where hi and hj are the feature representations of node i and node j, respectively, and eij is
the edge between them. M is a learnable function that computes the message to be sent.
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Once the messages have been passed, they are aggregated by each node to update its own
feature representation. The aggregation function can be defined as:

ai = AGGREGATE(mij ,∀j ∈ N (i)),

where N (i) is the set of neighbors of node i and AGGREGATE is a learnable function that
aggregates the messages.

Finally, the updated feature representation of node i is obtained by combining the original
feature representation with the aggregated messages:

h
(t−1)
i = COMBINE(h

(t)
i , ai),

where COMBINE is a learnable function that combines the current feature representation h
(t)
i

with the aggregated messages ai.
This process is typically repeated for several iterations, allowing each node to gather in-

formation from increasingly distant nodes in the graph. The final output of the GNN can be
obtained by feeding the updated feature representations of all nodes through a fully connected
layer or other appropriate output layer.

In the following section, we present a classic taxonomy of graph neural networks (GNNs).
It categorize graph neural networks (GNNs) into recurrent graph neural networks (RecGNNs),
convolutional graph neural networks (ConvGNNs), graph autoencoders (GAEs), and spatial-
temporal graph neural networks (STGNNs). In the following, we give a brief introduction of
how each category GNN works differently.

For the introduction later, we need to make some basic definitions in advance.

• Definition 1 (Graph): A graph is represented as G = (V,E) where V is the set of
vertices or nodes (we will use nodes throughout the paper), and E is the set of edges. Let
vi ∈ V to denote a node and eij = (vi, vj) ∈ E to denote an edge pointing from vj to vi.
The neighborhood of a node v is defined as N(v) = {u ∈ V |(v, u) ∈ E}.

• Definition 2 (Spatial-Temporal Graph): A spatial-temporal graph is an attributed
graph where the node attributes change dynamically over time. The spatial-temporal
graph is defined as G(t) = (V,E,X(t)) with X(t) ∈ Rn×d.

Recurrent graph neural networks (RecGNNs): RecGNNs are recognized as a ground-
breaking contribution to the field of graph neural networks. These models employ recurrent
neural architectures to acquire node representations by assuming that a node in a graph con-
sistently communicates with its neighbors until a stable equilibrium is attained.

Convolutional graph neural networks (ConvGNNs): Different from RecGNNs, Con-
vGNNs stack multiple graph convolutional layers to extract high-level node representations.
The main idea of Convolutional graph neural wetworks is to generate a node v’s representation
by aggregating its own features Xv and neighbors’ features Xu, where u ∈ N(v).

Figure 10 shows a ConvGNN for node classification. The figure highlights that each node’s
hidden representation is encapsulated by a graph convolutional layer that aggregates feature
information from its neighbors. Following the feature aggregation, a non-linear transformation
is applied to the resulting outputs. By stacking multiple layers, the final hidden representation
of each node receives messages from a broader neighborhood.

Besides, figure 11 demonstrates a ConvGNN with pooling and readout layers for graph
classification. The ConvGNN begins with a graph convolutional layer followed by a pooling
layer that coarsens the graph into sub-graphs. This helps in representing higher graph-level
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Figure 10: ConvGNN for node classification

representations through node representations on coarsened graphs. Finally, a readout layer
summarizes the final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

Figure 11: ConvGNN for graph classification

Graph autoencoders (GAEs): GAEs are machine learning frameworks that operate
without the need for labeled data. They utilize a process where nodes and graphs are trans-
formed into a latent vector space and then reconstructed based on the encoded information. In
the context of network embedding, GAEs can be used to learn latent node representations by
reconstructing graph structural information such as the graph adjacency matrix.

Figure 12 presents a GAE for network embedding. In this architecture, the encoder employs
graph convolutional layers to generate a network embedding for each node. The decoder then
uses these embeddings to compute pair-wise distances. After applying a non-linear activation
function, the decoder reconstructs the graph adjacency matrix. The network is trained by
minimizing the difference between the actual adjacency matrix and the reconstructed adjacency
matrix.

Spatial-temporal graph neural networks (STGNNs): STGNNs are designed to ex-
tract latent patterns from spatial-temporal graphs. The core concept behind STGNNs is to
consider both spatial and temporal dependencies concurrently. Current techniques typically
incorporate graph convolutions to capture spatial dependencies and RNNs or CNNs to model
temporal dependencies. In Figure 13, a STGNN architecture is presented for spatial-temporal
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Figure 12: GAE for network embedding

graph prediction. The graph convolutional layer takes A and X(t) as input to capture spatial
dependencies. The subsequent 1D-CNN layer operates on X along the time axis to capture
temporal dependencies. The output layer generates a prediction for each node, such as its
future value at the next time step, using a linear transformation.

Figure 13: STGNN for spatial-temporal graph forecasting

Training Frameworks: Many GNNs (e.g., ConvGNNs) can be trained in a (semi-) supervised
or purely unsupervised way within an end-to-end learning framework, depending on the learning
tasks and label information available at hand.

• Semi-supervised learning for node-level classification. ConvGNNs can effectively iden-
tify class labels for unlabeled nodes in a network that contains both labeled and unlabeled
nodes. To accomplish this, a robust model is learned using a single network. The pro-
cess involves building an end-to-end framework by stacking multiple graph convolutional
layers, followed by a softmax layer for multi-class classification.

• Supervised learning for graph-level classification. The goal of graph-level classification
is to predict the label or labels that correspond to an entire graph. Achieving this ob-
jective through end-to-end learning requires a combination of graph convolutional layers,
graph pooling layers, and readout layers. Graph convolutional layers extract high-level
representations of individual nodes, whereas graph pooling layers downsample each graph
by creating sub-structures. The role of readout layers is to combine node representations
for each graph into a single graph representation. To create an end-to-end framework for
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graph classification, we can employ a multi-layer perceptron and a softmax layer on the
graph representations.

• Unsupervised learning for graph embedding. If there are no class labels available for
graphs, we can still learn their embeddings in an unsupervised manner using an end-
to-end framework. These algorithms leverage edge-level information in two ways. One
approach is to use an autoencoder framework where the encoder uses graph convolutional
layers to embed the graph into a latent representation, which is then reconstructed by
a decoder to reproduce the graph structure. Another common approach is to employ
negative sampling, where a subset of node pairs are randomly selected as negative pairs,
while the node pairs with existing links in the graph serve as positive pairs. A logistic
regression layer is then applied to distinguish between positive and negative pairs.

3.4 Applications of GNN

The problems that GNN solve can be broadly classified into three categories:

• Node Classification

• Link Prediction

• Graph Classification

In node classification, the task is to predict the node embedding for every node in a graph.
This type of problem is usually trained in a semi-supervised way, where only part of the graph
is labeled. Typical applications for node classification include citation networks, Reddit posts,
Youtube videos, and Facebook friends relationships.

In link prediction, the task is to understand the relationship between entities in graphs and
predict if two entities have a connection in between. For example, a recommender system can
be treated as link prediction problem where the model is given a set of users’ reviews of different
products, the task is to predict the users’ preferences and tune the recommender system to push
more relevant products according to users’ interest.

In graph classification, the task is to classify the whole graph into different categories. It is
similar to image classification but the target changes into graph domain. There is a wide range
of industrial problems where graph classification can be applied, for example, in chemistry,
biomedical, physics, where the model is given a molecular structure and asked to classify the
target into meaningful categories. It accelerates the analysis of atom, molecule or any other
structured data types.
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