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Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Supervised Machine Learning Process

Supervised machine learning is the most commonly used machine learning. It uses labeled
datasets to train the algorithm which can be used to predict outcomes or to classify data into
specific categories.

1.1 Datasets

The datasets used by supervised machine learning can be represented by n sets of input and
output data {xi, yi}ni=1 , where xi represents input data which is a vector in d dimension and
yi which can be a vector or a scalar represents the output given xi. For example, xi can be
features of a house such as the total size of the house, the number of bedrooms or the location
of the house and yi in this case will be the price of the house that we want to predict.

1.2 Models

Model can be seen as a function F with certain input feature variables xnew and the output
will be the prediction result F (xnew) = ynew we want. This function can be anything and the
key point here is to find the ”best” function to make the prediction.

1.3 Loss Function

Loss function is the method we use to measure the goodness of a function. It can be written
as

L(F ) =
1

n

i=n∑
i=0

dist(F (xi), yi) (1)

Here, dist(F (xi), yi) is the difference between the model predicted result F (xi) and the real
output value yi, a better function will have smaller differences between these two values. Keep
in mind that the distance calculations can vary depending on different problem types, therefore,
we need to choose proper loss function first.

After we have our loss function, we can make comparison between two models F1 and F2

and the one with smaller loss function value will win. But here is a problem! What if one of
the model is created by simply memorizing the training datasets? In this case, the loss function
of this model will be 0 which means this model can not be beaten. In practice, the solution
for this problem is to split existing datasets into two parts: training data and test data. The
training data is used to develop the models and the test data is used to evaluate models later.
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1.4 Training Process

Now we have a standard way to measure the goodness of a model, the next step is to minimize
the loss function and find the best model with smallest loss function. This process is called
Training process. However, we will quickly realize that it is impossible to find the best
function among all possible functions. What we do is to restrict F to a specific family of
functions which we think will possibly contain a reasonable function. Then, we can make
comparisons between functions from the same function family such as linear.
Say we have functions written as

Fw(X) = wTx (2)

The loss function can be written as

L(Fw(x)) =
1

n

i=n∑
i=0

dist(Fw(xi), yi) (3)

The training process will be finding the w with the minimum loss function

w∗ = argmin
w

1

n

i=n∑
i=0

dist(Fw(xi), yi) (4)

One way to think about the optimization process is through Taylor Expansion for small
enough ∆w

L(w +∆w) ≈ L(w) + L′(w)(w +∆w − w) +
L′′(w)

2!
(w +∆w − w)2 + ... (5)

= L(w) + ∆wL′(w) + ... (6)

= L(w) + ∆w
∂L

∂w
+ ... (7)

where ∆w = ηδ⃗ and η represents the scalar size of change and δ⃗ indicates the direction of the
change.

2 Optimization algorithm

2.1 Gradient Descent

Gradient descent (GD) is a first-order iterative optimization algorithm for finding a local
minimum of a differentiable function. The idea is to take repeated steps in the opposite direction
of the gradient of the function at the current point, because this is the direction of steepest
descent.
In the machine learning process, we use GD to find the optimal parameter w∗. We start with
an initial value w0 and update w in the form of

wt = wt−1 − η∇wL

∣∣∣∣
wt−1

(8)

where η represents the step size and L is a loss function explained in section 1.4. In addition,
the gradient of L with respected to w is calculated by doing the partial derivative to every
dimension in weights vector:

∇wL =


∂L
∂w1
...
∂L
∂wn

 (9)

3 Linear Classifiers I-2



2.2 Newton’s Method

Newton’s method gives us a more accurate w∗ than GD does. As it uses a second-order function
for optimization. For using Newton’s method, we start with an initialization w0 and update w
in the form of:

wt = wt−1 −
∇wL

∇2
wL

∣∣∣∣
wt−1

= wt−1 −H−1∇wL

∣∣∣∣
wt−1

(10)

where H−1 is the Hessian matrix of the loss function L.
But Newton’s method is rarely used in machine learning applications as each iteration of New-
ton’s method is more expensive computationally than simple gradient descent. Thus, there
is a trade-off: while we need much fewer number of iterations to get to optimum (after good
initialization), we pay much more per iteration.

2.3 Step size

The question on how to choose the proper step size for the optimization process is worth
considering. A large step size may cause the oscillation in a function and a small one may take
quite a long time to find the minimum. Therefore, one should make smart choices on choosing
step size. Usually, once we have a flat, decreasing function (shown in the left graph below),
such as negative log function, we can use a larger step size to speed up the process. Conversely,
if we have a function such as quadratic (shown in the right graph below), we need to use a
small step size to avoid oscillation.
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On the other hand, find an optimal step size, η, is doable but not recommend. Since it is
equally hard for a process to solve the argmin

η
f(x− ηd) than to find the optimal fw(X).

3 Linear Classifier

3.1 Definition

A linear classifier is a supervised machine learning algorithm that separates data into differ-
ent classes by finding the best linear boundary (hyperplane) that separates the data. Linear
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Classifier has the form:

Fw(x) = w1x1 + w2x2 + w3x3 + · · ·+ wnxn + b (11)

= wTx+ b (12)

Where wi is the parameter we are trying to optimize for each xi, xi is the feature value of
the input data, b is the bias value which allows for a more accurate representation of the data
being modeled.

3.2 Linear Regression

3.2.1 Definition

Linear regression is a statistical method for modeling the relationship between a scalar depen-
dent variable y and one or more explanatory variables (or independent variables) denoted X.
The case of one explanatory variable is called simple linear regression. Linear Regression has
the same form as (11) (12).

Given a training dataset

T = {(x1, y1), (x2, y2) . . . , (xN , yN )} (13)

Where, xi ∈ Rn is the input, yi ∈ R is the corresponding output, i = 1, 2, . . . , N . We use the
training set to train a model Fw(X). For new input xN+1, the learned model will output yN+1.

3.2.2 Loss Function

One common loss function for regression learning is Mean Squared Error (MSE). It has the
form

L(Fw(X)) =
1

n

i=n∑
i=0

(Fw(xi)− yi)
2 (14)

Since MSE is a convex function (look it up by yourself) and local optimum is the global optimum,
we can use Least Squares to minimize MSE.
Let Y ∈ Rn be the Ground Truth vector, where n is the number of data; X ∈ Rnxd, where d
is the number of features including bias variable; w ∈ Rd be weight vector. Then MSE can be
rewritten as

MSE(w) =
1

n

i=n∑
i=1

(Xw − Y )2 (15)

=
1

n
(Xw − Y )T (Xw − Y ) (16)

=
1

n
(wTXTXw − wTXTY − Y TXw + Y TY ) (17)

∇MSE(w) =
2

n
(XTXw −XTY ) (18)

Setting the gradient to zero yields the following condition:

XTXw = XTY (19)

Multiplying both sides with (XTX)−1, one obtains the following:

w = (XTX)−1XY (20)
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