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Disclaimer: These lecture notes are intended to develop the thought process and intuition in 

machine learning. The materials are not thoroughly reviewed and can contain errors. 

 

Linear Models Review 

The data defines the problem, loss function selection is dependent on the domain (what is being 

solved), and model selection is dependent on what is believed to be a sufficient way to solve the 

problem.  An algorithm is defined once a loss function and model are defined. 

 

• A dataset consists of n number of features (𝑥𝑖) and labels (𝑦𝑖):  

 
𝐷𝑎𝑡𝑎 = {𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑛  
 

• Linear functions are of the form: 
 

𝐹𝜔(𝑥) = 𝜔𝑇𝑥 

 

• Least squares loss function for linear regression: 
 

𝐿(𝜔) =
1

𝑛
∑(𝜔𝑇𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

 

• Closed-form solution of linear regression when the loss function used is least squares: 
 

𝜔 = (𝑥𝑇𝑥)−1𝑥𝑇𝑦 
 

This method was popular due to its mathematical properties and closed-form solution; however, the 

inverse in the equation becomes problematic and expensive when the dataset is large. 

 



Regression vs. Classification 

Regression: 𝑦𝑖 is either a real number (e.g. price of a house) or a real vector (e.g. price of a stock, 

amount of investment in stock next year, etc.). 

Classification: 𝑦
𝑖
 is a class or category such as good or bad, negative or positive sentiment, apple 

or orange. 

 

Loss Function 

Linear regression and classification both make use of the linear function outlined above, however 

they are approached differently because the loss function for linear regression cannot be used in 

the same manner for linear classification.  

Example: 

The use of mathematical objects and optimizations requires that classes be assigned numbers, 

and so the classes of cats, cows, and dogs are mapped to numbers for use in the linear function 

as so: 

Class Assigned Value 

Cats 0 

Cows 1 

Dogs 2 

 

If the true value is Cats (0) then the loss function 𝐿(𝜔) =
1

𝑛
∑ (𝜔𝑇𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1  applied to each 

potential outcome has the associated loss given in the table below.  

Class Assigned Value Loss 

Cats 0 0 

Cows 1 1 

Dogs 2 4 

 

This would indicate that incorrectly predicting cows is closer to the true value of cats than 

incorrectly predicting dogs, however, they should have the same error because both are equally 

wrong. 

 

 



Binary Classification 

In binary classification, there are only two possible classes and the classes need to be assigned 

numbers to work with mathematical objects and optimizations. 

𝑦𝑖  =  {
−1
1

   and  𝑓(𝑥𝑖)  =  {
−1
1

 

Note: 0 could be used in place of -1 depending on preference. 

Linear classifier: 

𝐹𝜔(𝑥) = 𝑠𝑖𝑔𝑛(𝜔𝑇𝑥) 

Loss function: 

𝐿 =
1

𝑛
∑ 𝐼𝑦𝑖(𝜔𝑇𝑥𝑖)<0

𝑛

𝑖=1

 

Regularization 

Regularization is a technique in regression analysis that introduces constraints to the model to 
temper complexity and avoid overfitting.  This is accomplished by decreasing the parameters and 
shrinking the model.  Examples of regularization include K-means, Neural networks, and Random 
Forest.  
 
There are several commonly used techniques of regularization.  For example, the Residual Sum 
of Squares minimizes the following loss function: 
 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 (𝑅𝑆𝑆) =  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

 

 
 
Ridge Regression supplements the RSS loss function with a shrinkage quantity, which is likewise 
minimized.  The estimates produced by this method are known as the L2 norm. 
 

𝑅𝑖𝑑𝑔𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝑅𝑆𝑆 +  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

  
Lasso is similar to Ridge Regression except that it only penalizes high coefficients.  The coefficient 
estimates produced by this method are known as the L1 norm. 

𝐿𝑎𝑠𝑠𝑜 = 𝑅𝑆𝑆 +  𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 



Support Vector Machines 

Support Vector Machines (SVM) are a type of supervised learning model that has been widely 

applied to classification problems, but they can also be applied to regression (SVR). One reason 

that SVMs, which are simple algorithms, have been broadly adopted is that they achieve high 

accuracy with less computational power. During the lecture we talked about them in the context 

of linear binary classification; however, they can also perform non-linear classification by 

mapping their inputs into higher dimensional feature spaces using a kernel trick (discussed in the 

next lecture). Returning to the linear binary classification problem, the SVM predicts input data 

as either positive or negative instances based on their position with respect to a linear decision 

boundary or hyperplane in higher dimensional spaces (see figure 1). The linear function used in 

the SVM is the following: 

 

𝑓𝜔(𝑥)  =  𝜔𝑇𝑥 +  𝜔𝑜        

 

Where x is the feature data and ω are the model parameters. The function ƒω(x) represents the 

orthogonal distance from the decision boundary to a given data point. And the SVM output is 

the following: 

𝑦𝑖  =  𝑠𝑖𝑔𝑛(𝜔𝑇𝑥 + 𝜔𝑜)  =  {
0/−1,  𝜔𝑇𝑥 +  𝜔𝑜  <  0 

 1,          𝜔𝑇𝑥 + 𝜔𝑜  >  0 
            

 

Notice that the sign function only yields two values (-1,1) and doesn’t give a sense of confidence 

in the classification like the output of logistical regression. Instead, the distance of the data from 

the hyperplane provides a measure of classification confidence. The closer the training data is to 

the decision boundary the less confidence we have in its classification as well as the future 

classification of new data. 

 

 
Figure 1. A two-dimensional example of binary classification with SVM. 

 



Therefore, we want to maximize the minimum margin or orthogonal distance between the data 

and the decision boundary to minimize the chance of misclassification (i.e. Hard Margin SVM). 

Maximizing the margin also provides an additional constraint for selecting the optimal decision 

boundary. Notice in the left plot of figure 1 that several decision boundaries (green lines) can 

properly classify the data. This minimum distance is set by the closest data points on either side 

of the decision boundary (shown as filled symbols in the rightmost plot of figure 1). These data 

points are referred to as support vectors. Modifying or deleting these support vectors on a 

smaller dataset would significantly impact the location and orientation of the optimal decision 

boundary/hyperplane. 

 

Support vector machine optimization minimizes a combination of regularized hinge loss and 

maximal margin width: 

 

𝐿(𝜔)  =  𝑚𝑖𝑛( 𝐶 ∑ 𝑚𝑎𝑥[0, 1 − 𝑦𝑖(𝜔𝑇𝑥)]𝑛
𝑖=1  + 𝜆‖𝜔‖ 2

2)       

 

The second term in the minimization attempts to maximize the margin and is derived by first 

defining the margins as follows: 

 

𝜔𝑇𝑥 +  𝜔𝑜  ≥  𝑀       𝑤ℎ𝑒𝑛  𝑦𝑖  =  1   

𝜔𝑇𝑥 +  𝜔𝑜  ≤  𝑀       𝑤ℎ𝑒𝑛  𝑦𝑖  =  −1   

 

The orthogonal distance from the decision line to a given data point is the following: 

 

𝑑𝜔(𝑥)  =  
𝜔𝑇𝑥 + 𝜔𝑜

‖𝜔‖2
        

 

The constant M is generally set to equal 1. So, the margin width ends up being 2 times the 

distance from the decision line to the margin boundary: 

 

𝑑𝜔(𝑥)  =  
2

‖𝜔‖2
    

 

What’s interesting is that the minimization of the L2 norm of ω ends up maximizing the margin 

width. However, maximizing the margin alone (i.e. Hard Margin SVM) can lead to overfitting and 

doesn’t work for datasets that are less linearly separable. This leads us to the soft-margin SVM 

and the hinge-loss term in equation 3. In the soft-margin scenario, we are allowed to have some 

degree of misclassification, but we want to minimize this behavior using hinge loss. Figure 2 

below graphically shows the relationship between the orthogonal distance of data from the 

decision boundary and the corresponding cost. Looking closer at the hinge loss function:  

 

𝑚𝑎𝑥[0, 1 − 𝑦𝑖(𝜔𝑇𝑥)]       

 



This function chooses the max between 0 and the second term. If the real outcome (yi ) and the 

model prediction have the same sign and the data point is located at or further than a distance 

of one from the decision boundary, then the cost is zero (i.e. second term is ≤ 0). As the data 

points fall between the margin and the decision boundary the cost linearly increases to 1 (this 

scenario is shown in figure 2). This cost continues to linearly increase as the data are misclassified 

and located progressively away from the margin. However, this behavior could lead to outliers 

having a significant impact on the decision boundary and margin. As such, the hinge loss term is 

modulated by a parameter C and acts as a regularization. A smaller value of C imposes less 

penalty on misclassification and allows for larger margins.  

 

 
Figure 2: A graphical example of the hinge loss function. 

 

 

References: 

 

Regularization in Machine Learning 

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a 

 

Support Vector Machines: 
https://en.wikipedia.org/wiki/Support_vector_machine 

 

Support Vector Machine — Introduction to Machine Learning Algorithms: 

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-

algorithms-934a444fca47 

 

Understanding Hinge Loss and the SVM Cost Function: 

https://programmathically.com/understanding-hinge-loss-and-the-svm-cost-function/ 

 

https://en.wikipedia.org/wiki/Support_vector_machine

