

COMP 642 Machine Learning Jan 24, 2023

Linear Classifiers, Deep Learning: Logistic Regression with Sequential Non-Linear

Feature Extraction catered to minimize the loss

Lecturer: A. Shrivastava
Scribe By: Huafeng Liu (HL9), Ben Dowdell (BD52), Diyaz Yespayev (DY36), Ruslan
Kharko (RK80)

Disclaimer: These lecture notes are intended to develop the thought process and intuition

in machine learning. The materials are not thoroughly reviewed and can contain errors.

Motivation

Linear Regression:

Given the function:

Its loss function is:

𝐿𝑤 =
1

𝑛
∑ 𝑑𝑖𝑠𝑡 [

𝑤𝑇𝑥𝑖

‖𝑤‖‖𝑥𝑖‖
, 𝑦𝑖]

𝑛

𝑖=1

We’ve previously studied how the linear model 𝑤𝑇𝑥𝑖 is used for data when the label 𝑦𝑖 is in

the set of real numbers. How can the linear model be used when the label is a category?

Data: The format of the label determines the type of problem we are trying to solve.

Linear Classifiers:

There are three types of linear classifiers: SVMs, Perceptron and Logistic Regression.

1. Support Vector Machines (SVMs):

We can turn the linear model 𝑤𝑇𝑥𝑖 into a linear classifier by taking its sign. This

allows us to solve binary classification problems where 𝑦𝑖{−1, 1}.

Note that there could be many solutions (infinite number of lines that separates

points of different labels) for the decision boundary.

The best classifier is picked by imposing an additional requirement that the

classifier must be robust to perturbations in the data. In other words, if a data point

is moved slightly, its predicted label should not change. In the image above,

classifier c2 is the optimal classifier whereas c1 and c3 will both result in drastic

changes in predicted labels when the data point is perturbed about the classifier’s

decision boundary.

We quantify the distance of each data point from the decision boundary as 𝑘 and

write 𝑦𝑖(𝑤𝑇𝑥𝑖) ≥ 𝑘 . This illustrates that the optimal linear classifier is the one that

maximizes 𝑘. As such, SVM can be thought of as hinge loss with an L2 normalizer:

Additionally, imposing regularization (e.g. maximize error margin) could narrow

down the number of solutions to 1.

2. Perceptron:

What is a perceptron? A perceptron is a visual representation of a linear classifier

(although they can be used in regression tasks, as well). In a perceptron, the outputs

are linear combinations of inputs (x) with corresponding weights (w) plus a non-

linear activation function on top of it.

Perceptrons introduce non-linearity through the activation function to the linear

classifier 𝑤𝑇𝑥𝑖. Examples of activation functions include:

3. Logistic Regression:

Say that we have 𝑦𝑖 = {1, 2, 3}. SVM works nicely for binary classification, but when

we have more than one class, an issue arises. Logistic Regression can be formulated

as given input data 𝑥𝑖 and output label 𝑦𝑖 (in categories, e.g.1,2,3,…), find the

function that predicts 𝑦𝑖 with high accuracy. Despite the name, it is a classification

problem rather than a regression problem.

If we let each class in 𝑦𝑖 be represented by a perceptron and impose that each

perceptron’s value is the probability that an observation 𝑥𝑖 belongs to its class, we

can get around SVM’s binary classification limitation.

This requirement that each perceptron is the probability of a given data point

belonging to its class is fulfilled via the softmax activation function:

Regularization, Generalization, Overfitting

Generalization refers to a model's ability to predict new, unseen data accurately. The goal

of machine learning is to train a model that can generalize well to new examples rather

than memorizing the training data. When a model generalizes well, it means that it has

learned the underlying patterns in the data rather than just the specific examples it was

trained on. A model that generalizes well will perform well on new data, whereas a model

that overfits the training data will perform poorly on new data. Techniques like

regularization, which help to prevent overfitting, also improve a model's ability to

generalize.

Overfitting is a phenomenon that occurs in machine learning when a model is too complex

and performs well on the training data but poorly on new, unseen data.

Overfitting can be caused by an overly complex (many, many parameters) model that

predicts noise. If you have lots of data and increase the number of model parameters

beyond the number of observations in the data, you see the phenomena of Double Descent.

Image: Example of overfitting (black bear vs white bear). If black bear is always in pictures

with a green background and white bear’s images have white background, the model could be

overfit predicting based on the background rather than the animal, hence performing poorly

on images on an animal in the zoo.

Regularization techniques are used to calibrate the linear regression models to minimize

the adjusted loss function and prevent overfitting or underfitting. Using Regularization, we

can fit our machine learning model appropriately without observing the characteristic U-

shaped overfitting loss error on a given test set. Regularization techniques are commonly

used to force data to fit an assumption that data are independent, identically distributed, or

i.i.d.

Comparison of loss errors of non-regularized models (NR) and regularized models (RM)

Double Descent:

We already saw a graph of Loss Error vs Progress (or model complexity). Under the

classical bias-variance tradeoff, as we move further right along the x axis (i.e. increasing the

complexity of our model), we overfit and expect the test error to skyrocket further and

further upwards even as the train error continues decreasing.

References: https://mlu-explain.github.io/double-descent/

However, what we observe is quite different. Indeed the error does shoot up, but it does so

before descending back down to a new minimum. In other words, even though our model is

https://mlu-explain.github.io/double-descent/

extremely overfitted, it has achieved its best performance, and it has done so during this

second descent (hence the name, double descent)!

References: https://mlu-explain.github.io/double-descent/

We call the under-parameterized region to the left of the second descent the classical

regime, and the point of peak error the interpolation threshold. In the classical regime, the

bias-variance tradeoff behaves as expected, with the test error drawing out the familiar U-

shape.

To the right of the interpolation threshold, the behavior changes. We call this over-

parameterized region the interpolation regime. In this regime, the model perfectly

memorizes, or interpolates, the training data. That is, every model passes exactly through

the given training data, thus the only thing that changes is how the model connects the dots

between these data points.

References: https://mlu-explain.github.io/double-descent/

https://mlu-explain.github.io/double-descent/
https://mlu-explain.github.io/double-descent/

XOR Problem

Image1: Graphical representation of the XOR problem

(source: https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-

problem_fig1_221303423)

The XOR problem is a classic example of a problem that is not linearly separable in two

dimensions. The XOR problem is defined as a binary classification problem where the goal

is to separate a dataset of points into two classes, such that the points in one class have the

value (0,0) or (1,1) for their two input features, and the points in the other class have the

value (0,1) or (1,0). Since the points cannot be separated by a straight line in two

dimensions, it is impossible to solve this problem using a traditional linear classifier.

However, the XOR problem can be solved by transforming the input data into a higher-

dimensional space using a kernel function (feature transformation), and then applying a

linear classifier in that space. The kernel function maps the input data into a new space

where the data becomes linearly separable.

https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-problem_fig1_221303423
https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-problem_fig1_221303423
https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-problem_fig1_221303423

In the example above, binary class data lie along the line, 𝑦𝑖 = 0, and are seemingly

inseparable. However, by transforming the data such that 𝑦𝑖 = 𝑥𝑖
2, we see that the data are

transformed into a parabola and picking a linear classifier to separate the data becomes

trivial.

Further Reading

Support Vector Machines

https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3

Perceptrons

https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-

c4cfea20c590

Activation Functions

https://en.wikipedia.org/wiki/Activation_function

Logistic Regression

Logistic regression - Wikipedia

Softmax Activation Function

https://en.wikipedia.org/wiki/Softmax_function

https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3
https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590
https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Softmax_function

Generalization, Regularization, and Overfitting

https://mlu-explain.github.io/double-descent/

XOR Problems

https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-

59763136bdd7

https://mlu-explain.github.io/double-descent/
https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7
https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7

