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Disclaimer: These lecture notes are intended to develop the thought process and intuition 

in machine learning. The materials are not thoroughly reviewed and can contain errors.  

 

Motivation 

 

Linear Regression:  

 

Given the function: 

  
 

Its loss function is: 
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We’ve previously studied how the linear model 𝑤𝑇𝑥𝑖 is used for data when the label 𝑦𝑖 is in 

the set of real numbers. How can the linear model be used when the label is a category? 

 

Data: The format of the label determines the type of problem we are trying to solve. 

 

 
Linear Classifiers: 



 

 

There are three types of linear classifiers: SVMs, Perceptron and Logistic Regression.  

 

 

1. Support Vector Machines (SVMs): 

 

We can turn the linear model 𝑤𝑇𝑥𝑖 into a linear classifier by taking its sign. This 

allows us to solve binary classification problems where 𝑦𝑖{−1, 1}. 

 

 

 
Note that there could be many solutions (infinite number of lines that separates 

points of different labels) for the decision boundary.  

 

 
The best classifier is picked by imposing an additional requirement that the 

classifier must be robust to perturbations in the data. In other words, if a data point 

is moved slightly, its predicted label should not change. In the image above, 

classifier c2 is the optimal classifier whereas c1 and c3 will both result in drastic 

changes in predicted labels when the data point is perturbed about the classifier’s 

decision boundary. 

 

We quantify the distance of each data point from the decision boundary as 𝑘 and 

write 𝑦𝑖(𝑤𝑇𝑥𝑖)  ≥ 𝑘 . This illustrates that the optimal linear classifier is the one that 

maximizes 𝑘. As such, SVM can be thought of as hinge loss with an L2 normalizer: 

 



 

 
Additionally, imposing regularization (e.g. maximize error margin) could narrow 

down the number of solutions to 1. 

 

2. Perceptron: 

 

What is a perceptron? A perceptron is a visual representation of a linear classifier 

(although they can be used in regression tasks, as well). In a perceptron, the outputs 

are linear combinations of inputs (x) with corresponding weights (w) plus a non-

linear activation function on top of it. 

 
 

Perceptrons introduce non-linearity through the activation function to the linear 

classifier 𝑤𝑇𝑥𝑖. Examples of activation functions include: 

 

 
3. Logistic Regression: 

 

Say that we have 𝑦𝑖 =  {1, 2, 3}. SVM works nicely for binary classification, but when 

we have more than one class, an issue arises. Logistic Regression can be formulated 

as given input data 𝑥𝑖  and output label 𝑦𝑖 (in categories, e.g.1,2,3,…), find the 



 

function that predicts 𝑦𝑖 with high accuracy. Despite the name, it is a classification 

problem rather than a regression problem. 

 

If we let each class in 𝑦𝑖 be represented by a perceptron and impose that each 

perceptron’s value is the probability that an observation 𝑥𝑖  belongs to its class, we 

can get around SVM’s binary classification limitation. 

 

 
 

This requirement that each perceptron is the probability of a given data point 

belonging to its class is fulfilled via the softmax activation function: 

 

 

 
 

Regularization, Generalization, Overfitting 

Generalization refers to a model's ability to predict new, unseen data accurately. The goal 

of machine learning is to train a model that can generalize well to new examples rather 

than memorizing the training data. When a model generalizes well, it means that it has 

learned the underlying patterns in the data rather than just the specific examples it was 

trained on. A model that generalizes well will perform well on new data, whereas a model 

that overfits the training data will perform poorly on new data. Techniques like 

regularization, which help to prevent overfitting, also improve a model's ability to 

generalize. 



 

Overfitting is a phenomenon that occurs in machine learning when a model is too complex 

and performs well on the training data but poorly on new, unseen data. 

Overfitting can be caused by an overly complex (many, many parameters) model that 

predicts noise. If you have lots of data and increase the number of model parameters 

beyond the number of observations in the data, you see the phenomena of Double Descent. 

 

 

Image: Example of overfitting (black bear vs white bear). If black bear is always in pictures 

with a green background and white bear’s images have white background, the model could be 

overfit predicting based on the background rather than the animal, hence performing poorly 

on images on an animal in the zoo. 

Regularization techniques are used to calibrate the linear regression models to minimize 

the adjusted loss function and prevent overfitting or underfitting. Using Regularization, we 

can fit our machine learning model appropriately without observing the characteristic U-

shaped overfitting loss error on a given test set. Regularization techniques are commonly 



 

used to force data to fit an assumption that data are independent, identically distributed, or 

i.i.d. 

 

Comparison of loss errors of non-regularized models (NR) and regularized models (RM) 

 

Double Descent: 

We already saw a graph of Loss Error vs Progress (or model complexity). Under the 

classical bias-variance tradeoff, as we move further right along the x axis (i.e. increasing the 

complexity of our model), we overfit and expect the test error to skyrocket further and 

further upwards even as the train error continues decreasing. 

 
References: https://mlu-explain.github.io/double-descent/ 

 

However, what we observe is quite different. Indeed the error does shoot up, but it does so 

before descending back down to a new minimum. In other words, even though our model is 

https://mlu-explain.github.io/double-descent/


 

extremely overfitted, it has achieved its best performance, and it has done so during this 

second descent (hence the name, double descent)! 

 

 
References: https://mlu-explain.github.io/double-descent/ 

 

We call the under-parameterized region to the left of the second descent the classical 

regime, and the point of peak error the interpolation threshold. In the classical regime, the 

bias-variance tradeoff behaves as expected, with the test error drawing out the familiar U-

shape.  

 

To the right of the interpolation threshold, the behavior changes. We call this over-

parameterized region the interpolation regime. In this regime, the model perfectly 

memorizes, or interpolates, the training data. That is, every model passes exactly through 

the given training data, thus the only thing that changes is how the model connects the dots 

between these data points. 

 

 
References: https://mlu-explain.github.io/double-descent/ 

 

https://mlu-explain.github.io/double-descent/
https://mlu-explain.github.io/double-descent/


 

XOR Problem 

 
Image1: Graphical representation of the XOR problem 

(source: https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-

problem_fig1_221303423) 

  

The XOR problem is a classic example of a problem that is not linearly separable in two 

dimensions. The XOR problem is defined as a binary classification problem where the goal 

is to separate a dataset of points into two classes, such that the points in one class have the 

value (0,0) or (1,1) for their two input features, and the points in the other class have the 

value (0,1) or (1,0). Since the points cannot be separated by a straight line in two 

dimensions, it is impossible to solve this problem using a traditional linear classifier. 

  

However, the XOR problem can be solved by transforming the input data into a higher-

dimensional space using a kernel function (feature transformation), and then applying a 

linear classifier in that space. The kernel function maps the input data into a new space 

where the data becomes linearly separable. 

 

https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-problem_fig1_221303423
https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-problem_fig1_221303423
https://www.researchgate.net/figure/Graphical-representation-of-the-XOR-problem_fig1_221303423


 

 
In the example above, binary class data lie along the line, 𝑦𝑖 =  0, and are seemingly 

inseparable. However, by transforming the data such that 𝑦𝑖 =  𝑥𝑖
2, we see that the data are 

transformed into a parabola and picking a linear classifier to separate the data becomes 

trivial. 

 

Further Reading 

 

Support Vector Machines 

https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3 

 

Perceptrons 

https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-

c4cfea20c590 

 

 

Activation Functions 

https://en.wikipedia.org/wiki/Activation_function 

 

Logistic Regression 

Logistic regression - Wikipedia 

 

Softmax Activation Function 

https://en.wikipedia.org/wiki/Softmax_function 

 

https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3
https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590
https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Softmax_function


 

Generalization, Regularization, and Overfitting 

https://mlu-explain.github.io/double-descent/ 

 

XOR Problems 

https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-

59763136bdd7 

 

 

https://mlu-explain.github.io/double-descent/
https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7
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