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Abstract

Sender-based message logging is a new low-overhead mechanism for providing transpar-
ent fault-tolerance in distributed systems. It differs from conventional message logging
mechanisms in that each message is logged in volatile memory on the machine from
which the message is sent. Keeping the message log in the sender’s local memory allows
us to recover from a single failure at a time without the expense of synchronously logging
each message to stable storage. The message log is then asynchronously written to stable
storage, without delaying the computation, as part of the sender’s periodic checkpoint.
Maintaining the sender-based message log requires at most one extra network packet
over non-fault-tolerant reliable message communication and imposes little additional
synchronization delay. It can be applied transparently to existing distributed applica-
tions and does not require specialized hardware. It is currently being implemented on
a network of SUN workstations.

1 Introduction

Sender-based message logging is a new low-overhead mechanism for providing fault tolerance in
distributed systems. It can be applied transparently to existing applications and does not require
the use of specialized hardware. It supports the recovery of processes executing in a distributed
system from a single concurrent failure in the system at any time (i.e., no process can fail while
another process has failed or is recovering). We are using sender-based message logging to add
fault tolerance to compute-intensive applications executing in parallel on a collection of diskless
workstations connected by a local area network.

In a network of personal workstations, individual machines often become unavailable from hard-
ware failure or from the workstation owner reclaiming his machine. It is this type of failure from
which we wish to recover. We do not currently support recovery from more complicated failure
modes such as multiple concurrent failures or network partitioning, but instead concentrate on this
situation of a single failure at a time. Also, we do not address in this paper the issues of main-
taining the consistency and availability of static data such as file systems and databases [5] or the
constraints of real-time applications {6, 7).

Sender-based message logging differs from other types of message logging mechanisms [2, 9, 13]
in that the messages are logged in the local volatile memory on the machine from which each is
sent, as illustrated in Figure 1. Keeping the message log in the sender’s local memory allows us to
recover from a single failure at a time without the expense of synchronously logging each message
to a special logging or backup process or to stable storage, and without having to roll back any
processes other than the failed one to achieve a consistent state following recovery. The message
log is then asynchronously written to stable storage as part of the sender’s periodic checkpoint.
This allows the stable storage logging to proceed independently of computation, much the same
as in Strom and Yemini’s optimistic recovery protocol [13]. The sender-based message logging
protocols accomplish this volatile logging with a minimum of overhead. They require at most one
extra message over non-fault-tolerant reliable message communication and impose little additional
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FIGURE 1: Process and message log configuration

synchronization delay. This technique also distributes message logging overhead proportionally
over all processes sending messages and avoids the single point of failure possible with a centralized
logging facility.

This paper describes the design and operation of the sender-based message logging mechanism.
In Section 2, the model of a distributed system assumed by sender-based message logging is de-
scribed. An overview of the design and the motivation behind it is presented in Section 3, and
Section 4 describes the data structures necessary for its realization. Section 5 provides a detailed
description of the message logging and failure recovery protocols used in sender-based message
logging, and an informal argument of their correctness. This section also discusses an “optimistic”
version of the logging protocol that is currently under development. Related work is covered in
Section 6, and conclusions and avenues for further work are presented in Section 7.

2 Distributed System Model

Sender-based message logging is designed to work with existing distributed systems without the
addition of specialized hardware to the system or specialized code to applications. We make the
following assumptions about the hardware and the applications:

o The system is composed of a network of fail-stop processors [12].

o Packet delivery on the network is not guaranteed, but reliable delivery can be implemented
by retransmitting the packet a limited number of times and waiting for an acknowledgement
from the destination. If no acknowledgement is received, the destination host is assumed to
have failed.

e The network supports broadcast communication. All processors can be reached by a broad-
cast through a limited number of retransmissions of the packet.

e A network-wide stable storage service is always accessible to all processors in the system.
o Processes communicate with each other only through messages.

e All processes in the system are deterministic in the sense that, if two processes start in the
same state, and both receive the identical sequence of inputs, they will produce the identical
sequence outputs and will finish in the same state. The state of a process is thus completely
determined by its starting state and by the sequence of messages it has received.



3 Design and Motivation

In sender-based message logging, each message transmitted is stored in the volatile memory of
the machine from which it was sent. Additionally, each process is occasionally checkpointed to
stable storage, but there is no coordination between the checkpoints of individual processes. When
a process receives a message, it returns to the sender a receive sequence number, or RSN, which
is then added to the log with the message. The return of the RSN may be merged with any
acknowledgement required by the existing network protocol. This RSN indicates the order in
which that message was recetved relative to other messages sent to the same process from other
senders. This ordering information, which is not normally available to the sender, is required for
successful recovery since the messages must be replayed from the log in the same order as they
were received before the failure. Recovery of a failed process is done by restarting the failed process
from its checkpoint and replaying the messages from the logs at the senders in ascending order by
RSN.

Figure 2 shows an example of a distributed log resulting from this protocol. In this example,
process Y initially had an RSN value of 6. Y first received two messages from process Xi, then
two messages from process X2, and finally another message from X;. For each message received,
Y incremented its current RSN and returned this new value to the sender. As the correct sender
got the RSN from Y, it added it to its local log along with the message. After receiving these five
messages, the current value of the RSN for Y is 11.

This design is motivated by the desire to minimize the overhead on the system imposed by
the provision of fault tolerance. In general, there are three components to this overhead: message
logging, checkpointing, and failure recovery. We concentrate here on minimizing the overhead
of message logging. Since each message in the system must be logged, this overhead places a
continuous burden on the system even when no faults occur. The checkpointing frequency can be
tuned to balance its expense against the time needed for recovery or the space needed to store the
log of messages received since the last checkpoint. Also, the overhead of failure recovery should be
less important than that of message logging if failures are infrequent.

The method used for logging messages here is derived from a simple analysis of the minimum-
cost method of doing the required logging. When one process sends a message to another, both
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FIGURE 2: An example message log for sender-based message logging
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the sender and the receiver naturally get (or already have) a copy of the message. Rather than
synchronously sending a copy of it elsewhere for logging, it is faster to simply save a copy in local
memory on either the sending or the receiving machine. Since the purpose of the logging is to
recover the receiver if it fails, the receiver can not do this; however, the sending machine can easily
save a copy of each message sent. Keeping the message log in the sender’s local memory also
distributes the logging overhead proportionally over all processes that send messages and avoids
the possible single point of failure of a centralized log. It is this idea that forms the basis of the
sender-based message logging mechanism.

4 Data Structures

The inclusion of sender-based message logging in a distributed system requires the maintenance of
the following items of system data for each participating process:

o A send sequence number or SSN: a sequence number of messages sent by the process. This
is used for duplicate message suppression during recovery. Distributed systems that do not
provide fault tolerance typically already require such a sequence number for suppression of
duplicate messages. When this sequence number is included in the checkpoint of a process,
it can be used to suppress duplicates caused by process recovery as well.

e A receive sequence number or RSN: a sequence number of messages received by the process.
The RSN is incremented each time a new message is received, and the value after being
incremented is assigned as the RSN for this message and is returned to the sender.

e A message log of messages sent by the process. This must contain the entire message that
was sent including the data, the identification of the destination process, and the SSN used
for that message. When the RSN for a message is returned by the receiver, it is also added
to the log. After a process is checkpointed, all messages sent to that process and received
before the checkpoint can be removed from the logs in the sending processes.

o A table recording the highest SSN value received in a message sent by each process with
which this process has communicated. This is used for duplicate message detection.

e A table maintaining the RSN value that was returned for each message received since the
last checkpoint of this process. This table is indexed by the SSN of the message and may be
purged when the process is checkpointed.

Each of these data items except the last must be included when the process is checkpointed. When
a process is restarted from its checkpoint, their values will be restored along with the rest of the
checkpointed data.

5 The Protocols

The act of logging a message under sender-based message logging is not atomic, since the message
data is entered into the log when it is sent but the RSN can only be entered after it has been
received by the target process. It is thus possible for the receiver to fail while some messages do
not yet have their RSNs recorded at the sender; such messages are called partially logged messages.
The sender-based message logging protocols are designed so that any partially logged messages that
exist for a failed process can be sent to it in any order after the sequence of fully logged messages
have been sent to it in ascending RSN order.



5.1 Message Logging Protocol

With the sender-based message logging protocol, the following steps are required to send a message
M from process X to process Y:

1. Process X sends the message M to process Y and inserts the message in its local volatile
message log.

2. Process Y returns an acknowledgement to X and includes with this acknowledgement the
RSN value it assigned to M.

3. Process X adds the RSN for this message to its log and sends an acknowledgement for the
RSN back to Y.

The operation of this protocol in the absence of transmission errors is illustrated in Figure 3.

If either the message acknowledgement and RSN packet or the RSN acknowledgement packet
is not received within some time, the preceding packet is retransmitted. If no response is received
after some maximum number of such retransmissions, the destination machine is assumed to have
failed. After returning the RSN, the receiver can continue execution without waiting for the RSN
acknowledgement, but it must not send any messages (including input or output with the “outside
world”) until the RSNs of all messages that it has received have been acknowledged. The sender
may continue normal execution immediately after the message is sent, but it must continue to
retransmit the original message until the RSN packet arrives.

In comparison to the typical protocols used for reliable message delivery without fault tolerance,
this protocol requires one extra network packet, used to acknowledge tlic RSN. The sender does
not experience any extra delay, but does incur the overhead of copying the message and the RSN
to the log. The receiver may or may not experience some delay depending on whether it needs to
send messages immediately after receipt of the original message.

5.2 Failure Recovery Protocol

To recover a failed process, it is first restarted on some available processor from its most recent
checkpoint. All fully logged messages for this process are then resent to it in ascending order of their
logged RSNs. Only messages for which both the message data and the RSN have been recorded in
the log are resent at this time; any partially logged messages are then sent to the process in any
order after this. There is a separate message log stored at each process that sent messages to the
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FiGURE 3: Operation of the message logging protocol in the absence of transmission errors



failed process since its last checkpoint. The recovering process broadcasts requests for its logged
messages, which are then replayed to it in ascending RSN order, beginning with the next message
following the current RSN recorded in the checkpoint.

As the recovering process executes from its checkpointed state, it resends any messages that
it sent after the checkpoint before the failure. Since the next SSN to use in sending messages is
included in the process checkpoint, the SSNs used during recovery are the same as those used when
these messages were originally sent before the failure. When receiving a message, If its SSN is less
than or equal to the the highest SSN already received from this sender, the message is rejected as a
duplicate. If the receiver has not checkpointed since originally receiving this message, it returns an
acknowledgement including the RSN that it assigned when it first received this message. This RSN
value is retrieved from its table recording the correspondence between the SSN of each message
received and the RSN value assigned to that message. However, if the receiving process has been
checkpointed since this message was first received, this table entry will have been purged, and an
indication that this message need not be logged at the sender is returned instead.

5.3 Correctness

We show that in the case of a single failure at a time, this mechanism will correctly restore the
state of the failed process to be consistent with the states of the other processes in the system.

First, during recovery, the process restored from its checkpointed state, and the sequence of
fully logged messages are replayed to it in the same order as they were received before the failure
(in ascending RSN order), beginning following the checkpointed RSN value. By the assumption
of a single concurrent failure, these messages are all available in the volatile logs, and thus, by
the assumption of determinism, the process reaches the same state as it had after receipt of these
messages before the failure.

Next, the partially logged messages are replayed to the process in any order. Since processes
are restricted from sending new messages until all messages they have received are fully logged,
no processes other than the receiver can be affected by the receipt of a message that is still only
partially logged. Thus, any change in the order of receipt of the partially logged messages during
recovery can also only affect the state of the receiver and can not alter its consistency with other
processes in the system.

While a process is recovering, it will resend the same messages that it sent after the checkpoint
before the failure. Since the next SSN to use in sending messages is part of the checkpoint, these
duplicates will be correctly detected and rejected by their receivers.

The data structures necessary for further participation in the protocol (Section 4) are correctly
restored since they are recovered from the checkpoint and then modified as a result of receiving
the same sequence of messages. In particular, the volatile message log in the failed process is
recreated such that it may be used in the recovery of some other process after the current recovery
is completed. Normally, the original RSN is returned in response to the duplicate message and
is added to the log. However, if the receiver has checkpointed since this message was originally
received, this message can not be needed for any future recovery of the receiver. In this case,
an indication that the message is not needed is returned instead, the partially logged message is
removed from the volatile log, and no RSN is recorded. In either case, correct further operation of
the protocol is assured.

Finally, this mechanism avoids the problem of the domino effect [10, 11] since no processes v lier.
than the failed one need to be rolled back to recover from a failure.



5.4 An Optimistic Alternative

This protocol is an alternative to the basic message logging protocol of Section 5.1 that allows the
receiver to send new messages to other processes without waiting for all messages it has received
to be fully logged at their senders. This is an optimistic protocol in that it makes the optimistic
assumption that the logging will eventually be completed (through retransmissions if necessary)
before a failure occurs and maintains enough extra information to be able to roll back the system
and to recover a consistent state if the assumption turns out to be wrong. Although this protocol
is still under development, this section presents an initial overview of its design.

Using this optimistic protocol, it is now possible for a process to enter a state that is not
consistent with the system state that may be created from recovery after a failure. For example,
the scenario shown in Figure 4 is now possible. Here, process X has received a message M and then
sent a message N to process Y. Process X then failed before the RSN for message M had been
added to the log at its sender. During recovery, we cannot guarantee that message M is resent in
the same order as it was received before the failure. Thus, process X potentially can not recreate
the state from which message N was sent, and process Y may then exist in a state that is not
consistent with the state recreated for process X after its recovery.

We introduce the following terminology to describe this situation. The state of a process is
unrecoverable until all messages it has received are fully logged at their senders. If a process fails
in an unrecoverable state, its state is lost; otherwise, its state may again become recoverable if all
messages it has received are eventually fully logged by the return of their RSNs. When one process
receives a message from another, the state of the receiver depends on the state of the sender at the
time the message was sent because any part of the sender’s state might have been included in the
message. If a process depends on a state that becomes lost, the process becomes an orphan process
and the state of the process is then an orphan state.

In short, an orphan process Y is a process that has received a message N from a failed process
X that sent message N after receiving a message M that was not fully logged at the time of X’s
failure (Figure 4). If the current RSN of a process is included in all messages sent by the process,
and if each process maintains a table of the highest RSN it has received from any process, process
Y has become an orphan from the failure of process X, if the value for X in its RSN table is higher
than the RSN to which X was able to recover from the sequence of fully logged messages. To
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FIGURE 4: A possible scenario when using the optimistic logging protocol



determine whether its failure has caused other processes to become orphaned, X broadcasts the
value of the RSN to which it was able to recover. Any process that has a higher RSN value for X
recorded in its table of highest RSN values received concludes that it has become an orphan. In
addition to being invoked after a process failure, this orphan-detection algorithm must also be used
before a process is checkpointed, since if the process does become an orphan, a checkpoint from
before the state was orphaned will be needed for recovery.

After recovering the state of a process, the states of any orphaned processes are recovered
by forcing them to fail one at a time and recovering them from their checkpoints and message
logs in the same manner as is used for normal failed processes. Some of the messages logged for
an orphaned process may have been recorded in the memory of the failed process, but this log
information will be reconstructed during the recovery of that process. After the failed process and
all orphans are recovered, their states will be consistent as of the time that the last fully logged
message was received before the failure.

This form of the logging protocol has a number of advantages in addition to the added concur-
rency of allowing the receiver to proceed asynchronously from the receipt of the RSN acknowledge-
ment. For instance, the sender could delay sending the acknowledgement of the RSN packet for a
substantial period of time and piggyback it on the next message it needs to send to the receiving
process, with a timeout mechanism if no such message is present. This would reduce the number
of network packets to the same number as for reliable delivery in a system without fault tolerance.
Extending this further, if processes use a remote procedure call protocol to communicate, there
often is no explicit acknowledgement packet since the return from the RPC call implicitly acknowl-
edges the call [1]. In this case, the RSN can be piggybacked on the RPC return packet and the
RSN acknowledgement can be piggybacked on the next call packet, again without any additional
network packets for the provision of fault tolerance, even with this highly optimized protocol.

6 Related Work

A number of fault-tolerance systems require applications to be written according to specific com-
putational models to simplify the provision of fault tolerance. For example, the ARGUS system (8]
requires applications to be structured as a (possibly nested) set of atomic actions on abstract data
types. Since sender-based message logging is a transparent mechanism, it does not impose such
restrictions on the applications.

The Auros distributed operating system [2] and the PUBLISHING mechanism [9] both use
message logging but require specialized hardware to assist with the logging. Auros uses special
networking hardware that atomically sends each message also to backup processes for the sender
and the receiver. PUBLISHING uses a centralized logging machine that must reliably receive every
network packet. Since sender-based message logging requires no such specialized hardware, it can
be used over a broader class of existing systems without loss of efficiency.

Strom and Yemini’s optimistic recovery mechanism uses an optimistic asynchronous message
logging protocol that does not delay the sender or the receiver for synchronization with stable stor-
age logging [13]. Causal dependency tracking and process rollback are used to recreate a consistent
system state after a failure. The presence of a volatile log in sender-based message logging allows
us to recover from a single failure at a time without rollback, while still maintaining the asynchrony
between computation and stable storage logging. Furthermore, their desire to recover from more
than a single concurrent failure leads to protocols that are significantly more complicated than
sender-based message logging.



7 Conclusion

The sender-based message logging mechanism offers a simple, low-overhead solution to providing
fault tolerance in distributed systems. Keeping a volatile log allows us to recover from a single
failure at a time without rollback, and avoids the expense of synchronously logging each message
to stable storage. Organizing the volatile log by sender results in an efficient logging protocol, with
minimal extra network communication and synchronization delay. This results in an efficient fault-
tolerance protocol that works naturally within the constraints of a distributed system. No special
knowledge of fault tolerance is required by programs or programmers to use sender-based message
logging. Since it does not rely on any specialized hardware to achieve fault tolerance, sender-based
message logging can be added easily to existing distributed systems, as well as being designed into
new systems.

We are currently implementing a prototype of the sender-based message logging mechanism
under the V-System [4, 3] on a collection of SUN workstations connected by an Ethernet network.
Although the V-System differs slightly from the distributed system model assumed in this work,
we believe that this can be satisfactorily handled in the implementation. We are also continuing
development of the optimistic logging protocol discussed in Section 5.4. Finally, we are considering
the extension of sender-based message logging with causal dependency tracking similar to that used
in Strom and Yemini’s optimistic recovery protocol [13] to allow for recovery from multiple concur-
rent failures. The presence of the volatile log in the sender should greatly reduce the occurrence of
orphaned processes, thus reducing the need to roll back processes other than those that have failed.
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