Measured Performance of
Consistent Checkpointing

Elmootazbellah Nabil Elnozahy
Dawid B. Johnson
Willy Zwaenepoel

Rice COMP TR91-172
December 1991

Department of Computer Science
Rice University

P.O. Box 1892

Houston, TX 77251-1892



Measured Performance of Consistent Checkpointing

Elmootazbellah Nabil Elnozahy
David B. Johnson
Willy Zwaenepoel

Department of Computer Science
Rice University
P.O. Box 1892
Houston, Texas 77251-1892

(713) 527-4834

mootaz@rice.edu, dbj@rice.edu, willy@rice.edu

Abstract

Consistent checkpointing protocols can be used to provide transparent fault tolerance
for long-running distributed application programs. Many designs for such protocols
have been published in the literature, but little has been reported about their perfor-
mance in practice. In this paper, we give a preliminary report on the performance
measurements and implementation of consistent checkpointing on a distributed system
running on 16 SUN 3/60 diskless workstations. These measurements include the ef-
fect of consistent checkpointing on the running time of six compute-bound distributed
application programs.

For five of the applications that we studied, consistent checkpointing performs very well,
adding less than 2.5 % overhead to the running time of the program, for checkpoint-
ing intervals as small as 30 seconds. For the sixth program, which rapidly modifies
large amounts of memory during its execution, the overhead of consistent checkpoint is
higher, reaching a maximum of 20 %. The primary factor affecting the performance of
consistent checkpointing is the performance of stable storage on which the checkpoints
are recorded. The number of messages required by the consistent checkpointing protocol
is not a significant factor in the overall performance in our environment.

This work was supported in part by the National Science Foundation Grants CDA-8619893 and CCR-9116343, and
by IBM Corporation under Research Agreement No. 20170041, and by an IBM Graduate Fellowship.



however, include the kernel or any of the system servers running on that workstation, since we do
not attempt to make these components reliable. An RU can be restarted on any available machine.

Currently, each workstation can contain only one RU.

2.1 Checkpointing a Single RU

The checkpoint of a single RU includes a copy of its address space and the state maintained by
both the kernel and the system servers for that RU. Instead of writing the full address space
during each checkpoint, we use incremental checkpointing to reduce the amount of data written on
stable storage, thereby lowering the overhead. Incremental checkpointing involves writing only the
pages of the address space that have been modified since the last checkpoint. We use the memory
management hardware to support incremental checkpointing as follows: At the beginning of every
checkpoint, the dirty bit of each page in the RU’s address space is examined. If the page has been
modified, its dirty bit is cleared and the page is included in the set of pages to be written on stable
storage.

The set of pages that constitute the incremental checkpoint must not be modified by the appli-
cation processes while the checkpoint is being recorded on stable storage. Otherwise, the resulting
checkpoint may not represent the state that the RU had at any single point in time. The solution
in which the processes in the RU are blocked until the checkpoint is completely written on stable
storage [8, 15] is expensive. Instead, we have considered two alternative methods that allow the
processes to continue execution in parallel with checkpointing.

The first method uses copy-on-write by relying on the memory protection provided by the
memory management hardware [4]. In this method, the pages that constitute the incremental
checkpoint are write-protected. A checkpointing server writes these pages on stable storage while
the processes continues execution. Each page is unprotected after being written on stable storage.
If a process attempts to modify one of these pages before it is written on stable storage, a memory
protection fault is generated. In this case, the kernel will remove the protection on the page after
copying it into a newly allocated physical memory page, and the process is allowed to continue
execution. The newly allocated physical memory page is not accessible to the processes running
in the RU, and is used by the checkpointing server to write the original content of the page to be
modified on stable storage. The server deallocates the page after it is written on stable storage.
This scheme is similar to that used by Li et al. [10] in their concurrent checkpointing technique
for small physical memories. Unlike our implementation, however, they did not use the memory

management hardware to implement incremental checkpointing.



The second method uses pre-copying [7] to implement checkpointing!. In pre-copying, if the
number of pages in the incremental checkpoint is small, they are copied in the local memory and
written from there on stable storage. Otherwise, the pages are written in a pre-copying pass on
stable storage while the application processes continue execution. After the pre-copying pass com-
pletes, the pages in the incremental checkpoint are re-examined and those that were modified during
the pre-copying pass are marked for rewriting on stable storage. Again, a test is made to determine
whether a local copy of the modified pages can be made or if another pre-copying pass is necessary.
This iterative procedure continues until either a local copy is made or after a specified number of
pre-copying passes is exhausted. In the latter case, the application processes are blocked while the
modified pages are written on stable storage. This technique works well provided that the number
of pages modified during a pre-copying pass is small since, in this case, the processes are not blocked
except for the short time while the copy to local memory takes place.

We have implemented checkpointing by the two methods to compare between their perfor-
mances. Our measurements (see Section 4) show that checkpointing using copy-on-write performs
better than the pre-copying technique. Therefore, we have chosen copy-on-write as a basis for our

consistent checkpointing implementation.

2.2 Consistent Checkpointing

We have based our implementation on a simple three-phase consistent checkpointing protocol that
is a variation on the two-phase protocol by Koo and Toueg [9]. In this implementation, each RU
maintains one permanent checkpoint, belonging to the most recent system-wide consistent check-
point. A checkpoint server executes on each machine and controls the checkpointing of the local RU.
One distinguished server acts as a coordinator and sends requests to the other servers to synchro-
nize the consistent checkpoint. When the coordinator runs the protocol, each RU takes a tentative
checkpoint which replaces the permanent one only if the protocol terminates successfully [9]. The

protocol proceeds as follows:

1. The coordinator inhibits the local application processes from sending messages, protects the
modified pages in the RU’s address space with copy-on-write, and begins writing those pages
to the tentative checkpoint file. The coordinator then sends a broadcast message to the other
checkpoint servers, informing them of the start of a new checkpoint. When a checkpoint

server receives the message, it inhibits the local RU from sending application messages. It

! Pre-copying was originally used by Theimer et al. to implement process migration [17]. What we present here is an
adaptation of their method to support checkpointing.



also protects the modified pages in the local RU’s address space with copy-on-write, and
begins writing those pages to the checkpoint file. It then acknowledges the receipt of the

coordinator’s broadcast.

2. After the coordinator has received an acknowledgement from each checkpoint server, it allows
the local processes to resume sending application messages and sends a broadcast to the other
servers, directing them to remove the inhibition on sending application messages. When a

server receives this message, it immediately acknowledges its receipt.

3. After each server completes writing the checkpoint of the local RU, it sends a message to the
coordinator informing it of this fact. When the coordinator has collected this message from
all servers, it replies to each instructing them to replace the previous permanent checkpoints

with the tentative ones. The previous permanent checkpoints are discarded.

Inhibiting application processes from sending application messages in the period between the
coordinator’s first and second broadcasts ensures that the copy-on-write protection in all RUs is
established in a consistent manner. Since no process can send a message after its address space has
been protected, the set of checkpoints of the different RUs cannot show a message that was sent
after the checkpoint of the sender has been taken but received before the checkpoint of the receiver
was taken. The recorded checkpoints must therefore form a consistent checkpoint.

This implementation deviates from the protocol of Koo and Toueg in three aspects:

¢ We added a third communication round so that application processes are inhibited from
sending messages only for the period of time required for the coordinator to perform two
broadcasts to the servers (including the acknowledgement of the first broadcast). In the two-
phase protocol of Koo and Toueg, the processes are inhibited from sending messages until all
checkpoints are recorded on stable storage. We believe that this would be a severe penalty in

environments like ours, where recording checkpoints on stable storage is relatively slow.

¢ We have not implemented the dependency tracking of Koo and Toueg that is used to minimize
the number of RUs that have to participate in taking a consistent checkpoint. This decision
was motivated by the desire to simplify our first attempt at the implementation. We plan to

add this feature eventually.

¢ We have only one fixed RU that can start the protocol. This decision was also motivated by
our desire for simplicity, since we chose not to deal with the problems caused by concurrent

invocations of the protocol.



2.3 Stable Storage

A checkpoint of an RU is stored as a file on a shared network file server. The file server allows
files that store the tentative and permanent checkpoints of the same RU to share data blocks.
This facility is used to support storing the incremental changes to the checkpoint file with low
overhead. When an RU records a tentative checkpoint, it writes to a new file only the pages of its
address space that have been modified since the last checkpoint. The remaining data blocks that
represent the portions of the address space that have not been modified since the last checkpoint are
automatically shared between the tentative and permanent checkpoint files. Each file thus contains
a complete continuous image of the RU’s address space. When the tentative checkpoint is to be
made permanent, the data blocks that are private to the old checkpoint file are discarded.

Our current implementation uses a single network file server to simulate stable storage. This

2

subjects the system to a single point of failure *. In the final version of the implementation, we

plan to replicate the checkpoint files on several network file servers to address this problem.

3 Application Programs

The set of distributed application programs used in this study was chosen to represent a wide
range of compute-bound programs. These programs differ in memory requirements and usage, as
well as in communication patterns. They were not modified in any way to make use of consistent

checkpointing.

nqueens: This program counts the number of solutions to the n-queens problem. The search space
is evenly distributed among multiple processes, and no communication is required among the

processes except for reporting the final solution.

tsp: This program uses a branch-and-bound algorithm to find the solution to the traveling sales-
man problem for a given map of n cities. A main process maintains the current best solution
to the problem and a task queue that contains subsets of the search space. The main process
assigns tasks from the queue to a number of slave processes. Each slave process solves its
assigned task and reports the solution back to the main process, which updates the current

best solution and returns it back to the slave process along with a new task.

2When we started the implementation, we simply did not have the resources to replicate the checkpoint files on two
different network file servers.



f££t: This program computes the Fast Fourier Transform (FFT) for a given input of n data points.
The problem is evenly distributed among multiple processes, and no communication is re-

quired except for reporting the final solution.

sor: This program carries out Successive Over-Relazation (SOR) in a given n X n matrix. The
problem is distributed among multiple processes by giving each a section of the matrix on
which to compute. After each iteration, each process exchanges the new values on the edges

of its section with the corresponding neighbor processes.

gauss: This program performs Gaussian elimination with partial pivoting on a given n X n matrix.
The problem is distributed among multiple processes by giving each a subset of the matrix
columns on which to operate. At each step of the reduction, the process which holds the

pivot element sends the pivot column to all other processes.

matmult: This program multiplies a given pair of matrices of size n X n. The problem is distributed
among multiple processes by giving each a section of the result matrix to compute, and no

communication is required except for reporting the final solution.

4 Performance of Checkpointing a Single RU

Consistent checkpointing protocol cannot perform well without efficient checkpointing for each RU.
In this section, we examine the performance of checkpointing a single RU in isolation to obtain
more accurate measurements than would be possible when running as part of a large distributed
application. We also compare the performance of checkpointing by copy-on-write against that by

pre-copying.

4.1 Component Costs

The total elapsed time required to write a new checkpoint is dominated by the time required to write
the modified pages of the address space to the checkpoint file. In our implementation, this time
is approximately 2.78 seconds per megabyte of modified address space, or about 21.7 milliseconds
per 8-kilobyte memory page. The time required to write the address space to the checkpoint is
approximately 4 % more than that required to write the same amount of data to a file on the
network file server. In addition to the cost of writing the modified address space, there is a small
fixed cost of about 70 milliseconds per checkpoint. Included in this fixed cost are 17 milliseconds
required to open and close the checkpoint file, and 2.1 milliseconds required to extract the relevant

state of the kernel and the system servers.



The time required to perform recovery of an application program after a failure is highly de-
pendent on the particular program being recovered. This time varies most with the time needed
to re-execute from the checkpointed state, but this re-execution time is bounded by the interval at
which new checkpoints are recorded. As with checkpointing, the time to restore a process from its
checkpoint is dominated by the time required to read the process address space data into memory.
In our implementation, the measured time for restoring a checkpoint is approximately 1.5 seconds
per megabyte of user address space being restored, plus a small fixed cost of about 50 milliseconds.
For comparison, the time required to read the address space from the checkpoint is approximately
the same as that required for a user process to read the same amount of data from a file on the

network file server.

4.2 Performance of the Application Programs

To measure the effect of checkpointing on the performance of application programs, we ran each
of the six application programs described in Section 3, using only a single process rather than
executing as a distributed application. Table 1 shows the memory requirements for each program
when run using only a single process. The memory size is the total amount of memory used by
the program. The code size and the data size are the amounts of memory used for code and data,
respectively. The size of the checkpoint file is equal to the total size of the memory used by the
process in addition to about 2 Kbytes of kernel and server states. Table 1 also shows the running
time for each process without checkpointing. The running time was measured in hours, minutes
and seconds.

We measured the running time of each program with four different checkpointing intervals:

30 seconds, 1 minute, 5 minutes, and 10 minutes. Table 2 shows the percentage increase in run-

Table 1

Properties of application programs measured (sequential version).

Name Problem Size | Memory Size Code Size Data Size Running Time
(n) (Kbytes) (Kbytes) (Kbytes) (hh:mm:ss)
nqueens 15 56 30 26 2:38:04
tsp 17 112 29 83 3:49:10
fft 4096 152 23 129 2:56:46
sor 512 2080 18 2062 3:22:42
gauss 600 2856 24 2832 3:01:21
matmult 850 | 7536 18 7518 2:21:24




ning time for each application due to checkpointing overhead. For nqueens, tsp, and fft, the
running times remained essentially the same with the increase in checkpointing frequency from no
checkpointing to 30-second checkpoint 3. For gauss and sor, which rapidly modify large amounts
of memory, the running time increase was noticeable, reaching 16 % for sor with the increase of
checkpointing frequency from no checkpointing to 30-second checkpoint. However, for larger check-
point intervals, the effect of checkpointing overhead was negligible. For matmult, the running time
remained essentially the same even though this program uses the largest amount of memory among

the six applications studied.

4.3 The Behavior of Checkpointing

Table 3 shows the average performance of recording a process checkpoint during the execution of
these application programs. For each application program and each checkpointing interval tested,
the average elapsed time required to complete each checkpoint is reported, as is the average time
that the application program’s execution was blocked during each checkpoint. The elapsed time
represents the time during which the modified pages of the process’s address space were being
written to the checkpoint file, but most of this writing occurred in parallel with the process’s
continued execution due to the copy-on-write mechanism used in our implementation. The process
is blocked only if no free memory page is available when a copy-on-write memory protection fault
occurs during the checkpoint. Table 3 also shows the average number of pages written to the file

during each checkpoint. This is the number of pages of the process’s address space that had been

Table 2

Percentage increase in running time for application
programs due to checkpointing overhead.

Checkpointing Interval

Program

30 sec. 1 min. 5 min. 10 min.
nqueens 0.07 0.04 0.00 0.02
tsp 0.02 —0.02 -0.04 —0.04
fft 0.13 0.07 0.03 0.02
sor 15.63 7.79 1.60 0.77
gauss 4.72 3.14 0.69 0.38
matmult 0.02 —-0.03 L 0.00 0.09

3Some measurements imply that checkpointing actually improves performance. This is only an artifact of the differ-
ence in running times being much less than the standard deviation in these measurements, which was 0.5%.



Table 3

Average performance of a recording a process checkpoint (secs.)

Program | Checkpoint | Elapsed Blocked Pages Pages
Interval Time Time Written Faulted
nqueens 30 sec. 17 .00 2 2
1 min. .15 .00 2 2
5 min. .15 .00 2 2
10 min. .19 .00 2 2
tsp 30 sec. 17 .00 2 2
1 min., 13 .00 2 2
5 min. .18 .00 2 2
10 min. .15 .00 2 2
fft 30 sec. .29 .00 4 3
1 min. .28 .00 4 3
5 min, .29 .00 5 3
10 min. .32 .00 5 3
sor 30 sec. 5.57 4.26 258 131
1 min. 5.55 4.11 258 131
5 min. 5.52 4.33 258 131
10 min. 5.46 3.98 258 131
gauss 30 sec. 5.09 .19 229 20
1 min. 5.58 .38 267 34
5 min. 5.88 A7 274 34
10 min. 5.82 .09 274 34
matmult 30 sec. .35 .00 8 3
1 min. 44 .00 13 3
5 min. 1.29 .00 48 3
10 min. 2.14 .00 92 3

modified since the previous checkpoint. The final column of Table 3 gives the number of pages of
the process’s address space that were being written to the checkpoint file but were modified again
while this write operation was still in progress, causing a copy-on-write protection fault.

For the nqueens, tsp, and ££t programs, blocking the process’s execution during the checkpoint
was not necessary. As indicated by the number of pages written and faulted during the checkpoint,
these three programs use very little data memory. For example, only one stack page and one global

variable data page are used by nqueens and tsp. Since this is the minimum memory that a normal



running program can use, the checkpointing of these programs is essentially unaffected by the choice
of checkpointing interval.

For sor and gauss, their heavier memory usage placed increased demands on the checkpointing
mechanism. The sor program modifies its entire data memory during each iteration, and thus must
write all of this memory to every checkpoint. This is demonstrated by the number of pages written
on each checkpoint, which is equal to the program’s data size. In fact, during execution intervals
as small as the elapsed checkpointing time (about 5.5 seconds), sor was able to modify about half
of its data space, as indicated by the number of page faults during each checkpoint. This high
fault rate caused all available memory on our hardware to be exhausted with copy-on-write copies,
and thus sor was forced to block for most of its elapsed checkpointing time. In this respect, sor
represents a worst case scenario for our checkpointing method. The gauss program exhibits similar
behavior, although it does not modify as much of its address space as quickly, and thus does not
cause as many copy-on-write faults or as much blocked time as does the sor program.

Although matmult has the largest data size of the six programs studied, much of this data
is actually treated as read-only by the program (the two input matrices), and it computes more
slowly across its data space, modifying only one output matrix element at a time. Thus, incremen-
tal checkpointing makes matmult behave like the smaller programs in terms of its checkpointing
performance, even though it has the largest memory requirement.

Our conclusion is that the overhead of checkpointing is mainly determined by the rate at which

an application program modifies its address space during each checkpoint interval.

4.4 The Effect of Incremental Checkpointing

Table 4 shows the size of the incremental checkpoint as a percentage of the total amount of memory
used by each application program. Incremental checkpointing shows its effectiveness in matmult.
Compared to the size of a full checkpoint, the size of an incremental checkpoint is smaller by two
orders of magnitude at a checkpointing interval of 30 seconds, and smaller by an order of magnitude
at a checkpointing interval of 10 minutes. If we did not implement incremental checkpointing, we
believe that the running time for matmult would have increased by at least the same ratio as sor,
instead of being essentially unchanged as shown in Table 2. Incremental checkpointing was also
effective for nqueens, tsp and £ft, reducing the amount of data written on disk by a factor from
3 to 6. Incremental checkpointing, however, did little for gauss and almost nothing for sor. These
applications present a worst case for incremental checkpointing, because the rapid modification of
large portions of the address space tends to make an incremental checkpoint more or less a full

checkpoint.

10



Table 4

Percentage of the address space included in an incremental checkpoint

Checkpointing Interval
Program
30 sec. 10 min.

nqueens 28.6 28.6

tsp 14.3 14.3

fft 21.0 26.3

sor 99.2 99.2

gauss 64.1 76.8
Lmat‘.mult. | 0.8 9.8

Our conclusion is that incremental checkpointing is an effective optimization for many appli-
cations. Since it does not add overhead and is simple to implement, we believe that it should be
an integral part of any checkpointing implementation, even though there are applications that will

not benefit.

4.5 Pre-Copying Versus Copy-on-Write

We found that the effect of either technique on the application performance is dominated by the
time in which the process is blocked while the checkpoint is taken. Under either technique, the
blocking time was a small fraction of the checkpoint elapsed time for all applications but the
sor program. Therefore, for these applications, the effect of pre-copying checkpointing on the
application performance is similar to that reported for copy-on-write. However, for sor, the pre-
copy of the address space before the process was blocked accomplished little, due to the rapid
modification of the address space. When the process was blocked, almost its entire address space
was rewritten to the file. For example, at a 1-minute checkpointing interval, the blocking time for
pre-copying is about 40 % higher than the blocked time for copy-on-write and the elapsed time per
checkpoint was just over twice that with copy-on-write.

Pre-copying also writes more pages to disk in a checkpoint than copy-on-write on the average.
Because this tends to increase the load on the file server, and because the measurements do not
show any advantage of pre-copying over copy-on-write we conclude that copy-on-write is always at

least as good as pre-copying, and for large programs, may significantly outperform pre-copying.

11



5 Consistent Checkpointing

In this section, we present the measurements of the application programs when run using 16 iden-
tical SUN-3/60 workstations connected by a 10Mbit/sec Ethernet. For brevity, we report here the

measurements using only 30-second checkpointing intervals.

5.1 The Performance of Application Programs

Each application program contained sixteen processes that ran each on a different workstation
and communicated through the network to compute the solution. Table 5 shows the memory
requirements of each of these sixteen processes. It also shows the running time for each of the
six application programs when distributed. The total size shown for each application-program is
the amount of memory required by each of the sixteen processes. The code and data size are the
amounts of this memory used to store code and data, respectively. For most programs, the amount
of memory used by each process in the distributed case is smaller than that used in the sequential
case, since the data is not fully replicated at each process.

Table 6 gives the percentage increase in running time for the six distributed application pro-
grams at a checkpointing interval of 30 seconds. As with the sequential checkpointing performance,
the overhead of consistent checkpointing for most programs did not cause a significant increase
in the running time. Likewise, consistent checkpointing overhead was high for sor. However, the
overhead is higher with consistent checkpointing than with the sequential case. The reason is that
all processes of the application checkpoint at essentially the same time, increasing the load on the

file server. We plan to investigate whether using dependency tracking as suggested by Koo and

Table 5

Memory requirement of each process in the application
programs measured (distributed version)

Name Problem Size Total Size Code Size Data Size Running Time
(n) (Kbytes) (Kbytes) (Kbytes) (hh:mm:ss)
nqueens 15 48 18 30 0:12:30
tsp 17 48 21 27 0:58:24
fft 4096 104 21 83 0:11:38
sor 512 2088 20 2068 0:35:59
gauss 600 248 20 228 0:12:24
matmult 850 3224 18 3206 0:06:37

12




Table 6

Percentage increase in running time for application programs running on 16 machines.

Checkpointing Interval
Program
30 sec.

nqueens 0.6
tsp 1.0
fft 2.0
sor 19.6
gauss 2.4
matmult 0.7

Toueg [9] can solve this problem by minimizing the number of processes that have to participate

in taking the checkpoint.

5.2 The Behavior of Consistent Checkpointing

Table 7 shows the average performance per process for each checkpoint recorded during the ex-
ecution of these six distributed application programs. This table shows the same performance
measures as Table 3 reported for single-process checkpoint. The figures reported here are smaller
than in Table 3 because the program data is distributed over 16 machines. Again, the overhead
of checkpointing is determined by the rate at which each process modifies its address space during

the interval between two consecutive checkpoints.

Table 7

Average performance per process for consistent checkpointing (secs.)

Program | Checkpoint | Elapsed Blocked Pages Pages
Interval Time Time Written Faulted
nqueens 30 45 17 2 1
tsp 30 .45 .28 2 1
fft 30 .50 36 4 2
sor 30 1.40 .59 24 19
gauss 30 1.50 .54 18 16
matmult 30 .67 48 5 2

13



5.3 The Effect of Incremental Checkpointing

The arguments made in our study of the checkpointing of the sequential programs in favor of
using incremental checkpointing apply for the distributed case as well. For example, incremental
checkpointing reduces the amount of data written during each checkpoint to only 1 % of the amount

of memory used by the process.

5.4 The Effect of the Number of Messages

Our implementation of consistent checkpointing requires three rounds of communication between
the coordinator and the rest of the processes, irrespective of the distributed application that is
being checkpointed. This, in theory, is more expensive than many other consistent checkpointing
protocols in the literature. However, the results reported in Tables 6 show that the overhead for
matmult is 0.7 %. This insignificant increase in running time includes both the effect of writing the
checkpoint on stable storage and the effect of the communication. Since the communication rounds
are fixed for all applications, the increase in overhead in applications like sor cannot be attributed
to the number of messages exchanged. We conclude that the overhead of consistent-checkpointing
is mainly affected by the performance of stable storage, rather than the number of messages needed

to coordinate the checkpoint.

6 Conclusion

In this paper, we have presented a preliminary report about the measured performance and imple-
mentation of consistent checkpointing. For application programs that use only small amounts of
memory or slowly modify new portions of their memory, consistent checkpointing performs well,
adding essentially no overhead to the running time of the program, for checkpointing intervals as
small as 30 seconds. For programs that quickly modify all or most of a large address space, the
overhead of consistent checkpoint can be as high as 20 % for the applications that we tested at a
checkpointing interval of 30 seconds. The primary factor affecting the performance of consistent
checkpointing is the performance of stable storage on which the checkpoints are recorded. The
effect of the coordination messages required by the consistent checkpointing protocol on the overall
performance is insignificant.

We are continuing to collect performance measurements using additional types of programs such
as distributed event simulation. In addition, we are also measuring the effects of replicating the

checkpoint data on two or more file servers, in order to increase the resiliency of the checkpointing

14



implementation. We also plan to study the overall performance of application programs in the

presence of failures and recoveries.

References

[1] Mustaque Ahamad and Luke Lin. Using checkpoints to localize the effects of faults in dis-
tributed systems. In Proceedings of the 8th Symposium on Reliable Distributed Systems, pages
1-11, October 1989.

[2] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

[3] D.R. Cheriton. The V distributed system. Communications of the ACM, 31(3):314-333, March
1988.

[4] R. Fitzgerald and R.F. Rashid. The integration of virtual memory management and interpro-
cess communication in accent. ACM Transactions on Computer Systems, 4(2):147-177, May
1986.

[5] S. Israel and D. Morris. A non-intrusive checkpointing protocol. In The Phoeniz Conference
on Communications and Computers, pages 413-421, 1989.

[6] F. Jahanian and F. Cristian. A timestamp-based checkpointing protocol for long-lived dis-
tributed computations. In Proceedings of the 10th Symposium on Reliable Distributed Systems,
pages 12-20, Bologna, Italy, September 1991.

[7] D.B. Johnson. Distributed System Fault Tolerance Using Message Logging and Checkpointing.
PhD thesis, Rice University, December 1989.

[8] M.F. Kaashoek, R. Michiels, H.E. Bal, and A.S. Tanenbaum. Transparent fault-tolerance in
parallel orca programs. Technical Report IR-258, Vrije Universiteit, Amesterdam, October
1991.

[9] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE
Transactions on Software Engineering, SE-13(1):23-31, January 1987.

[10] K. Li, J.F. Naughton, and J.S. Plank. Real-time, concurrent checkpoint for parallel programs.
In Proceedings of the 1990 Conference on the Principles and Practice of Parallel Programming,
pages 79-88, March 1990.

[11] K. Li, J.F. Naughton, and J.S. Plank. Checkpointing multicomputer applications. In Proceed-
ings of the 10th Symposium on Reliable Distributed Systems, pages 1-10, October 1991.

[12] B.P. Miller and J.D. Choi. Breakpoints and halting in distributed programs. In Proceedings
of the 8th International Conference on Distributed Computing Systems, pages 141-150, June
1988.

[13] R.D. Schlichting and F.B. Schneider. Fail-stop processors: An approach to designing fault-
tolerant computing systems. ACM Transactions on Computer Systems, 1(3):222-238, August
1983.

15



[14] M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proceedings of the 6th Inter-
national Conference on Distributed Computing Systems, pages 382—-388, May 1986.

[15] Y. Tamir and C.H. Séquin. Error recovery in multicomputers using global checkpoints. In
1984 International Conference on Parallel Processing, pages 32-41, August 1984.

(16] K.E. Taylor. The role of inhibition in consistent cut protocols. In Proceedings of the 3rd
Workshop on Distributed Algorithms, 1989.

[(17] M. Theimer, K. Lantz, and D.R. Cheriton. Preemptable remote execution facilities in the V-
system. In Proceedings of the 10th ACM Symposium on Operating Systems Principles, pages
2-12, December 1985.

(18] Z. Tong, R.Y. Kain, and W.T. Tsai. A lower overhead checkpointing and rollback recovery
scheme for distributed systems. In Proceedings of the 8th Symposium on Reliable Distributed
Systems, pages 12-20, October 1989.

[19] K.-L. Wu and W.K. Fuchs. Recoverable distributed shared memory. IEEE Transactions on
Computers, 39(4):460-469, April 1990.

16





