The Performance of Consistent Checkpointing

FElmootazbellah Nabil Elnozahy
David B. Johnson*
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston, Texas 77251-1892

mootaz@cs.rice.edu, dbj@cs.cmu.edu, willy@cs.rice.edu

Abstract

Consistent checkpointing provides transparent fault tol-
erance for long-running distributed applications. In this
paper we describe performance measurements of an im-
plementation of consistent checkpointing. Our measure-
ments show that consistent checkpointing performs re-
markably well. We executed eight compute-intensive dis-
tributed applications on a network of 16 diskless Sun-3/60
workstations, comparing the performance without check-
pointing to the performance with consistent checkpoints
taken at 2-minute intervals. For six of the eight applica-
tions, the running time increased by less than 1% as a re-
sult of the checkpointing. The highest overhead measured
for any of the applications was 5.8%. Incremental check-
pointing and copy-on-write checkpointing were the most
effective techniques in lowering the running time over-
head. These techniques reduce the amount of data written
to stable storage and allow the checkpoint to proceed con-
currently with the execution of the processes. The over-
head of synchronizing the individual process checkpoints
to form a consistent global checkpoint was much smaller.
We argue that these measurements show that consistent
checkpointing is an efficient way to provide fault tolerance
for long-running distributed applications.

1 Introduction

The parallel processing capacity of a network of work-
stations is seldom exploited in practice. This is due in
part to the difficulty of building application programs that
can tolerate the failures that are common in such environ-
ments. Consistent checkpointing is an attractive approach

This work was supported in part by the National Science
Foundation under Grants CDA-8619893 and CCR-9116343,
by the Texas Advanced Technology Program under Grant
No. 003604014, and by an IBM Graduate Fellowship.
*Author’s current address: School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213-3890.

1060-9857/92 $3.00 ©1992 IEEE

39

for transparently adding fault tolerance to distributed ap-
plications without requiring additional programmer ef-
fort [26,30]. With consistent checkpointing, the state
of each process is saved separately on stable storage as
a process checkpoint, and the checkpointing of individ-
ual processes is synchronized such that the collection of
checkpoints represents a consistent state of the whole sys-
tem [6]. After a failure, failed processes are restarted on
any available machine and their address space is restored
from their latest checkpoint on stable storage. Surviving
processes may have to rollback to their latest checkpoint
on stable storage in order to remain consistent with re-
covering processes [15].

Much of the previous work in consistent checkpoint-
ing has focused on minimizing the number of processes
that must participate in taking a consistent checkpoint or
in rolling back [1, 11, 15, 17]. Another issue that has re-
ceived considerable attention is how to reduce the number
of messages required to synchronize the consistent check-
point [2, 5, 8, 16, 19, 24, 28, 29]. In this paper, we focus in-
stead on the overhead of consistent checkpointing on the
failure-free running time of distributed application pro-
grams. We report measurements of an implementation
of consistent checkpointing and analyze the various com-
ponents of the overhead resulting from consistent check-
pointing.

The overhead of checkpointing during failure-free com-
putation includes (1) the cost of saving the checkpoints
on stable storage, (2) the cost of interference between the
checkpointing and the execution of processes, and (3) the
cost of the communication between processes required to
ensure that the individual process checkpoints record a
consistent system state. Stable storage for checkpoints is
provided by a highly available network file server. The
checkpoints cannot be saved on a local disk or in local
nonvolatile memory since that would make them inacces-
sible during an extended outage of the local machine. The
cost of saving the checkpoints to stable storage therefore
includes both the cost of network transmission to the file
server and the cost of accessing the stable storage device
on the file server.

Our implementation of consistent checkpointing runs
on sixteen diskless Sun-3/60 workstations connected by
a 10 megabit per second Ethernet. Our measurements
show that consistent checkpointing can be implemented
very efficiently, adding very little overhead to the failure-
free execution time of distributed application programs.
With a 2-minute checkpointing interval, the running time
increased by less than 1% for six of the eight distributed
application programs that we studied. The highest over-
head measured was 5.8%. The most important factors
affecting the performance were the interference between a
process’s checkpointing and its concurrent execution, and
the amount of data saved with each checkpoint on stable
storage. The synchronization of the individual process
checkpoints to form a consistent global checkpoint added
little overhead.

Section 2 of this paper describes our implementation
of consistent checkpointing. In Section 3, we briefly de-
scribe the eight application programs used in our study.
We report and analyze our performance measurements of
this implementation in Section 4. In Section 5, we com-
pare our research with related work, and in Section 6; we
present our conclusions.

2 Implementation

The system is assumed to consist of a collection of fail-
stop [23] processes. A process consists of a single address
space, residing on a single machine, and all threads exe-
cuting in that address space. On each machine, a check-
point server controls the checkpointing of the local pro-
cesses, and participates in the consistent checkpointing
protocol.

2.1

The checkpoint of a single process includes a copy of the
process’s address space and the state maintained by the
kernel and the system servers for that process. Instead
of writing the entire address space to stable storage dur-
ing each checkpoint, we use incremental checkpointing to
reduce the amount of data that must be written. Only
the pages of the address space that have been modified
since the previous checkpoint are written to stable stor-
age. This set of pages is determined using the dirty bit
maintained by the memory management hardware in each
page table entry.

Furthermore, we allow the application to continue exe-
cuting while its checkpoint is being written to stable stor-
age. However, if the application process modifies any of
its pages during the checkpoint, the resulting checkpoint
may not represent the state that the process had at any
single point in time. We have considered two alternative
solutions to this problem.

The first solution uses copy-on-write memory protec-
tion, supported by the memory management hardware [9].
At the start of an incremental checkpoint, the pages to be
written to stable storage are write-protected. After writ-

Checkpointing a Single Process

40

ing each page to stable storage, the checkpoint server re-
moves the protection from the page. If a process attempts
to modify one of these pages while it is still protected, a
memory protection fault is generated. The kernel copies
the page into a newly allocated page of memory, removes
the protection on the original page, and allows the pro-
cess to continue. The newly allocated page is not acces-
sible to the process. It is used only by the checkpoint
server to write the original contents of the page to sta-
ble storage and is then deallocated. If insufficient mem-
ory is available to allocate a new page for handling the
copy-on-write fault, the process is blocked until memory
can be allocated. This scheme is similar to that used by
Li et al. [18] in their concurrent checkpointing technique
for small physical memories. Unlike our implementation,
however, they did not implement incremental checkpoint-
ing.

The second solution that we considered uses pre-
copying [12,27]. If the number of pages to be written
to stable storage is below some threshold, the pages are
copied at once to a separate area in memory and are then
written from there to stable storage without interrupt-
ing the process’s execution. Otherwise, a “pre-copying”
pass is made over the process’s address space, writing the
modified pages from the process’s address space to stable
storage. The process continues to execute and can freely
modify any of these or other pages during the pre-copying
pass. Once these pages have been written to stable stor-
age, the number of modified pages in the address space
is reexamined. If it is still above the threshold, addi-
tional pre-copying passes are performed, up to a defined
maximum number of passes. If the maximum number of
passes has been exceeded, the process is suspended while
the remaining modified pages are written directly from its
address space to stable storage.

The pre-copying method avoids the expense and com-
plication of handling copy-on-write faults, but may need
to write some pages to stable storage more than once, if
they are modified again during a pre-copying pass. In ad-
dition, pre-copying may need to suspend the process in
order to complete the checkpoint, if additional pages of
the address space are being modified too quickly by the
process during pre-copying passes.

We have implemented checkpointing using each of these
two methods and compared their performance. Our mea-
surements show that the overhead introduced by copy-on-
write checkpointing is always less than or equal to that in-
troduced by pre-copying checkpointing. For example, for
one application, the time required to write a checkpoint
with pre-copying was 40% higher than with copy-on-write.
Therefore, we chose copy-on-write for our implementation
of consistent checkpointing. All measurements reported
in the remainder of this paper were performed with the
copy-on-write implementation.

2.2 Consistent Checkpointing

One distinguished checkpoint server acts as a coordinator
and sends messages to the other servers to synchronize the

consistent checkpoint. Each process maintains one perma-
nent checkpoint, belonging to the most recent consistent
checkpoint. During each run of the protocol, each process
takes a tentative checkpoint, which replaces the perma-
nent one only if the protocol terminates successfully [15).
Each consistent checkpoint is identified by a monotoni-
cally increasing Consistent Checkpoint Number (CCN).
Every application message is tagged with the CCN of its
sender, enabling the protocol to run in the presence of
message re-ordering or loss [5, 16]. We use this check-
pointing protocol both for its simplicity and because we
have found that it performs well in our environment.
The protocol proceeds as follows:

1. The coordinator starts a new consistent checkpoint
by incrementing CCN and sending marker mes-
sages [6] that contain CCN to each process in the
system.

2. Upon receiving a marker message, a process takes
a tentative checkpoint by saving the process’s kernel
and server state and writing the modified pages of
the address space to the checkpoint file, as explained
in Section 2.1. The tentative checkpoint is written
concurrently with the process’s execution.

A process also starts a tentative checkpoint if it re-
ceives an application message whose appended CCN
is greater than the local CCN. Since this message was
transmitted after its sender had started participating
in the consistent checkpoint, the receiver must check-
point its state before receiving this message in order
to maintain the consistency of the global checkpoint.

3. After the tentative checkpoint has been completely
written to stable storage, the process sends a success
message to the coordinator.

4. The coordinator collects the responses from all pro-
cesses, and if all tentative checkpoints have been suc-
cessful, it sends a commit message [10] to each pro-
cess; otherwise, it sends an abort message. When a
process receives a commit message from the coordina-
tor, it makes the tentative checkpoint permanent and
discards the previous permanent checkpoint. When
a process receives an abort message, it discards its
tentative checkpoint.

2.3 Stable Storage

Each process checkpoint is stored as a file on a shared
network file server. The file server structures the disk as
a sequential log in order to optimize write operations [21].
Files that store different checkpoints of the same process
physically share data blocks, in order to efficiently store
the incremental changes to the checkpoint file. When
a process records a tentative checkpoint, it writes the
pages of its address space that have been modified since
its last checkpoint to a new file. The remaining data
blocks, which represent the portions of the address space

41

not modified since the previous checkpoint, are automat-
ically shared with the older checkpoint files of that pro-
cess. Each file logically contains a complete image of the
process’s address space. When a checkpoint file is deleted,
only the data blocks that are not shared with other check-
point files are discarded.

In order to protect against a failure of the primary
server, the checkpoint files are also saved on a backup
file server. During the period of low load between two
consecutive consistent checkpoints, the primary file server
updates the backup’s state.

3 The Application Programs

We chose the following eight long-running, compute-
intensive applications, representing a wide range of mem-
ory usage and communication patterns:

o fft computes the Fast Fourier Transform of
16384 data points. The problem is distributed by
assigning each process an equal range of data points
on which to compute the transform.

gauss performs Gaussian elimination with partial
pivoting on a 1024 x 1024 matrix. The problem is
distributed by assigning each process a subset of the
matrix columns on which to operate. At each iter-
ation of the reduction, the process which holds the
pivot element sends the pivot column to all other
processes.

grid performs an iterative computation on a grid
of 2048 x 2048 points. In each iteration, the value
of each point is computed as a function of its value
in the last iteration and the values of its neighbors.
This application occurs in the kernel of many fluid-
flow modeling algorithms. The problem is distributed
by assigning each process a section of the matrix on
which to compute. After each iteration, each process
exchanges the new values on the edges of its section
with the corresponding neighbor processes.

matmult multiplies two square matrices of size 1024 x
1024. The problem is distributed by assigning each
process a portion of the result matrix to compute.
No communication is required other than reporting
the final solution.

nqueens counts the number of solutions to the
n-queens problem for 16 queens. The problem is dis-
tributed by assigning each process an equal portion
of the possible positions of the first two queens. No
communication is required other than reporting the
total number of solutions found at completion.

prime performs a probabilistic test of primality for
a 64-digit integer, using the Pollard-Rho method. A
master process distributes work from a task queue to
each slave process. Each slave process communicates
only with the master, and the master announces the

number’s factors that have been discovered at com-
pletion.

e sparse solves a sparse system of linear equations in
48000 unknowns, using a variation on the iterative
(Gauss-Seidel method. The system is sparse in that
less than 0.25% of each row in the matrix is nonzero.
The problem is distributed by assigning each process
an equal subset of the unknown variables. After each
iteration, each process sends the new values of its
assigned unknown variables to all other processes.

o tsp solves the traveling salesman problem for a dense
map of 18 cities, using a branch and bound algorithm.
A main process maintains the current best solution
and a task queue containing subsets of the search
space. The main process assigns tasks from the queue
to the slave processes. When a slave process finds
a new minimum, it reports the path and its length
to the main process. The main process updates the
current best global solution, if necessary, and returns
its length to the slave process.

4 Performance

4.1 Overview

Our implementation of consistent checkpointing runs on
an Ethernet network of 16 diskless Sun-3/60 worksta-
tions. Each workstation is equipped with a 20-MHz Mo-
torola MC68020 processor and 4 megabytes of memory,
of which 740 kilobytes are consumed by the operating
system. These machines run a version of the V-System
distributed operating system [7] to which we have added
our checkpointing mechanisms. Our experimental envi-
ronment also includes two shared Sun-3/140 network file
servers, each using a 16-MHz MC68020 processor and a
Fujitsu Eagle disk, on which the checkpoints are written.
The checkpoint data of a single process can be written
to the file server over the network at a rate of about 550
kilobytes per second. All measurement results presented
in this paper are averages over a number of trials. Stan-
dard deviations for all measurements were under 1% of
the average.

All measurements of the eight application programs
were made with the execution distributed across 16 ma-
chines, with one process per machine. The running times
range from about 48 minutes for gauss to about 3 hours
for ££t, and the total amount of memory used across
the 16 machines ranges from 656 kilobytes for nqueens to
47 megabytes for sparse. Table 1 summarizes the running
time and the memory requirements of each application.

4.2 Checkpointing Overhead
4.2.1 Measurements

Table 2 presents a comparison between the running times
of the application programs when run without checkpoint-
ing and when run with consistent checkpointing with a 2-

Running Per Process Memory

Program Time (Kbytes)

Name (minutes) [o 4e Data Total
fft 186 21 555 576
gauss 48 20 576 596
grid 59 21 2163 2184
matmult 137 20 2348 2368
nqueens 7 18 22 40
prime 53 38 74 112
sparse 65 22 2954 2976
tsp 73 21 27 48

Table 1 Application running time and
memory requirements.

minute checkpointing interval. We believe this choice of
checkpoint interval is conservative. In practice, we expect
longer checkpoint intervals to be used. In that sense, our
measurements overestimate the cost of consistent check-
pointing, since longer checkpoint intervals reduce failure-
free overhead.

Some additional performance statistics are provided in
Table 3. The data written column represents the average
amount of data written to stable storage per consistent
checkpoint (summed over all 16 processes). The elapsed
time column shows the time from the initiation of the
checkpoint to the receipt by the coordinator of the last
acknowledgement of its commit message. This time cor-
responds roughly to the period during which a process
may incur copy-on-write faults due to checkpointing. The
copy-on-write faults column gives the average number of
such faults that occur per checkpoint in each process. The
checkpoint’s elapsed time is also the time during which
a process may become blocked, waiting for a new page
to become available to service a copy-on-write fault. The

Without With Difference

Program Checkp. { Checkp.

Name (sec.) (sec.) (sec.) %
fft 11157 11184 27 0.2
gauss 2875 2885 10 0.3
grid 3552 3618 66 1.8
matmult 8203 8219 16 0.2
nqueens 4600 4600 0 0.0
primes 3181 3193 12 0.4
sparse 3893 4119 226 5.8
tsp 4362 4362 0 0.0

Table 2 Running times with and without
checkpointing.

Total Coord. Per Process

Program Data Elapsed | Copy-on | Blocked
Name Written Time Write Time

(Mbytes) | (sec.) Faults (sec.)
fft 0.4 2.0 4 0.0 .
gauss 7.1 14.1 50 0.0
grid 35.0 60.2 122 0.1
matmult 0.9 3.3 3 0.0
nqueens 0.3 1.5 2 0.0
prime 0.7 2.8 4 0.0
sparse 13.5 25.7 44 5.5
tsp 0.2 0.2 2 0.2

Table 3 Additional performance statistics
(per checkpoint).

blocked time column indicates the average amount of time
that each process was actually blocked during each check-
point.

4.2.2 Analysis

For all applications but grid and sparse, the effect of
checkpointing on the application program performance is
negligible. The overhead for grid is somewhat larger be-
cause that program modifies every point in the 2048 x 2048
grid during each iteration. As a result, most of the ad-
dress space of each grid process is modified between any
two consecutive checkpoints, and must be written to sta-
ble storage for each checkpoint. The sparse program has
the most overhead, 226 seconds or 5.8% of the running
time. Blocking is responsible for 176 of the 226 seconds
of overhead: The program takes 32 checkpoints during its
execution, and the average blocked time per checkpoint
is 5.5 seconds (see Tables 1 and 3). The sparse program
consumes about 95% of the available memory on each
machine. The remaining pages of memory are quickly ex-
hausted in servicing the copy-on-write faults during each
checkpoint, causing the execution to block for extended
periods.

The increase in failure-free running time as a result of
checkpointing is affected primarily by the amount of free
memory available on each workstation and by the amount
of data to be written to stable storage. The amount of free
memory available determines the effectiveness of copy-on-
write in preventing the application program from block-
ing during a checkpoint. The amount of data written
on stable storage determines the elapsed time required to
complete the checkpoint. The elapsed time influences the
number of copy-on-write faults that may occur and deter-
mines the period during which a process may be blocked.

4.2.3 Summary

Consistent checkpointing adds little overhead to the run-
ning time of the application programs. On average, the

43

overhead is about 1%, with the worst overhead measured
being 5.8%. We argue that this is a modest price to pay
for the ability to recover from an arbitrary number of fail-
ures.

4.3 Copy-on-Write Checkpointing

4.3.1 Measurements

We use copy-on-write to avoid blocking the processes
while the checkpoint is written on stable storage. To
measure the effectiveness of this solution, we modified
our checkpointing implementation such that a process
remained blocked for the duration of its process check-
point. We then measured the performance of the eight
distributed application programs using this implementa-
tion and compared the performance to our copy-on-write
implementation. These results are presented in Table 4.

4.3.2 Analysis

The measurements show that blocking the application
program while the checkpoint is being written to stable

‘storage is expensive. The performance degradation is de-

pendent on the amount of checkpoint data to be saved,
due to the latency in writing the data to the file server.
For example, applications with large memory sizes to be
checkpointed such as grid and sparse show high over-
heads (85% and 20%, respectively) when blocking check-
pointing is used, but incur only small overheads (1.8%
and 5.8%, respectively) with copy-on-write checkpoint-
ing. Applications with very small memory sizes such as
nqueens and tsp show no measurable overhead at all with
copy-on-write.

4.3.3 Summary

Using copy-on-write eliminates most process blocking dur-
ing checkpointing and thus greatly reduces the overhead
of consistent checkpointing. For programs using larger

% Increase in running time
grogram Blocking Copy-on-write
ame oo o

Checkpointing Checkpointing
fft 0.2 0.2
gauss 13.7 0.3
grid 85.0 1.8
matmult 3.7 0.2
nqueens 1.8 0.0
prime 2.9 0.4
sparse 20.0 5.8
tsp 1.8 0.0

Table 4 Blocking checkpointing vs.
copy-on-write checkpointing: % increase in
running time.

memory sizes, copy-on-write should become even more
important.

4.4 Incremental Checkpointing
4.4.1 Measurements

The goal of using incremental checkpointing is to re-
duce the amount data written on stable storage during
each checkpoint. We compared incremental checkpoint-
ing against full checkpointing, where the entire address
space of each process is written to stable storage during
each checkpoint. Tables 5, 6 and 7 compare the amount
of data written to stable storage, the percentage increase
in running time, and the elapsed time for full and incre-
mental checkpointing.

4.4.2 Analysis

The applications can be subdivided into three categories
with respect to incremental checkpointing: applications
with a large address space that is modified with high local-
ity (fft, matmult and sparse), applications with a large
address space that is modified almost entirely between any
two checkpoints (gauss and grid), and applications with
a small address space (nqueens, prime, and tsp). For the
applications in the first category, incremental checkpoint-
ing is very successful. For the applications in the second
category, incremental checkpointing is much less effective,
because most of the address space is modified between any
two consecutive checkpoints. Finally, the small address
spaces of the applications in the third category make any
reduction in overhead insignificant.

4.4.3 Summary

Incremental checkpointing reduces the overhead for many
applications. Since it is easy to implement and never
makes performance worse, its potential gain justifies its
inclusion in any checkpointing implementation.

Amount of data written (Mbytes)

IP\;r;iam Full Incremental %
Checkpoint Checkpoint | Reduction

fft 9.4 0.4 96
gauss 9.4 7.1 24
grid 35.1 35.0 0
matmult 37.9 0.9 98
nqueens 0.6 0.3 50
prime 1.8 0.7 61
sparse 47.7 13.5 72
tsp 0.8 0.2 75

Table 5 Full vs. incremental checkpointing:
amount of data written (Mbytes).

% Increase in running time

;r;i;am Full Incremental

Checkpoint Checkpoint
fft 0.2 0.2
gauss 0.5 0.3
grid 2.0 1.8
matmult 1.8 0.2
nqueens 0.0 0.0
prime 0.9 0.4
sparse 17.0 5.8
tsp 0.0 0.0

Table 6 Full vs. incremental checkpointing:
percentage increase in running time.

Elapsed time (sec.
;zg?m Full Incremental %
Checkpoint Checkpoint | Reduction
fft 17.6 2.0 89
gauss 17.8 14.1 21
grid 60.2 60.2 0
matmult 66.1 3.3 95
nqueens 2.6 1.5 42
prime 4.0 2.8 30
sparse 86.9 25.7 70
tsp 2.2 0.2 91

Table 7 Full vs. incremental checkpointing:
elapsed time (sec.).

4.5 Checkpoint Synchronization
4.5.1 Measurements

In order to create a consistent checkpoint, the processes
in the system must synchronize their checkpointing such
that the most recent checkpoint of each process records a
consistent state of the system. In contrast, in optimistic
checkpointing [2], each process takes checkpoints indepen-
dently. The system attempts to construct a consistent
system state from the available process checkpoints. Op-
timistic checkpointing avoids the overhead of checkpoint
synchronization, but may lead to extensive rollbacks and
the domino effect [2, 20, 22]. It also requires garbage col-
lection of process checkpoints no longer needed.

To measure the effect of the synchronization on check-
pointing overhead, we modified our implementation to use
optimistic checkpointing. We measured the performance
of the application programs using this modified implemen-
tation, such that each process takes the same number of
checkpoints as in the experiment described in Section 4.2.
Table 8 shows the percentage increase in running time for

the application programs using both forms of checkpoint-
ing.

4.5.2 Analysis

For all applications, with the exception of sparse, the
increases in running time as a result of either consistent
checkpointing or optimistic checkpointing were within 1%
of each other. For sparse, the overhead of optimistic
checkpointing was 3.0% vs. 5.8% for consistent check-
pointing. Optimistic checkpointing performed better for
sparse because each process was able to write its check-
point to the file server with little interference from other
processes. In consistent checkpointing, all processes at-
tempted to write their checkpoints at essentially the same
time, increasing the load on the file server and slowing
its response. Optimistic checkpointing performed worse
on gauss than consistent checkpointing. This apparent
anomaly is due to the global communication-intensive
nature of the gauss program. The execution of a pro-
cess slows down somewhat while it is being checkpointed,
which may cause some delay in transmitting application
messages. Each iteration of gauss requires global com-
munication among the processes of the application to dis-
tribute the next pivot column. As a result, slowing down
the execution of a single process tends to slow the entire
application program waiting for messages from that pro-
cess. With optimistic checkpointing, the checkpoints of
separate processes are taken at different times, causing
additional slowdown of the entire application. With con-
sistent checkpointing, instead, all processes take a check-
point at essentially the same time, causing only a single
slowdown of the application.

4.5.3 Summary

The difference between the overhead introduced by opti-
mistic checkpointing and that introduced by consistent
checkpointing is small. Given the potential for exten-
sive rollback and the domino effect with optimistic check-

% Increase in running time
Program R N
Name Optimistic Consistent
Checkpointing Checkpointing

fft 0.2 0.2
gauss 1.0 0.3
grid 1.6 1.8
matmult 0.1 0.2
nqueens 0.0 0.0
prime 0.2 0.4
sparse 3.0 5.8
tsp 0.0 0.0

Table 8 Optimistic vs. consistent
checkpointing: % increase in running time

45

pointing, consistent checkpointing appears the method of
choice for our environment.

5 Related Work

Previous work in checkpointing has concentrated on is-
sues such as reducing the number of messages required to
synchronize a checkpoint [2, 5, 8, 16, 19, 24, 28, 29], limit-
ing the number of hosts that have to participate in taking
the checkpoint or in rolling back [1, 11, 15, 17}, or using
message logging to eliminate the need for synchronizing
the checkpoints and to accelerate input-output interac-
tions with the outside world [4, 13, 25]. There are very
few empirical studies of consistent checkpointing and its
performance.

Bhargava et al. [3] reported on the performance of
checkpointing. They concluded that, in their environ-
ment, the messages used for synchronizing a checkpoint
were an important source of overhead. Their conclusion
is different from ours, because of the small size of the pro-
grams used in their study (4 to 48 kilobytes). For such
small sizes, the overhead of writing data to stable storage
is indeed negligible, making the communication overhead
an important factor. For larger applications, the overhead
of writing data to stable storage dominates.

Kaashoek et al. [14] implemented consistent checkpoint-
ing to add fault tolerance to Orca, a distributed shared
object-oriented language. Their implementation takes
advantage of the ordered broadcasts already present in
the Orca runtime system to order marker messages with
respect to application messages. Processes are blocked
while their checkpoint is being written to stable storage.
A limited form of incremental checkpointing is used: the
application code is written to the checkpoint only once,
but all data is written out on each checkpoint, whether
modified or not. As can be seen from Section 4.3, for
applications with a large amount of memory to be check-
pointed, the cost of blocking checkpointing can be quite
high. Furthermore, the results in Section 4.4 indicate that
the amount of data written to stable storage can be re-
duced significantly by writing only modified pages to the
checkpoint.

Li et al. [18] described several checkpointing methods
for programs executing on shared memory multiproces-
sors. Their results showed that nonblocking copy-on-write
checkpointing reduces the overhead for checkpointing pro-
grams running on shared memory multiprocessors. They
did not implement incremental checkpointing, which we
found to be an important optimization. They also did
not address the problem of consistent checkpointing in
distributed systems. We have shown that the cost of syn-
chronizing process checkpoints to form a consistent sys-
tem state is quite small.

6 Conclusions

We have presented performance measurements taken on
an implementation of consistent checkpointing on an Eth-

ernet network of 16 Sun 3/60 workstations. The results
demonstrate that consistent checkpointing is an efficient
approach for providing fault-tolerance for long-running
distributed applications. With a checkpoint interval as
short as 2 minutes, consistent checkpointing on average
increased the running time of the applications by about
1%. The worst overhead measured was 5.8%. Detailed
analysis of the measurements further demonstrates the
benefits of nonblocking copy-on-write checkpointing and
incremental checkpointing. Using copy-on-write allows
the process to continue execution in parallel with tak-
ing the checkpoint. It avoids a high penalty for check-
pointing for processes with large checkpoints, a penalty
that reached as high as 85% for one of our applications.
Using incremental checkpointing reduces the load on the
stable storage server and the impact of the checkpointing
on the execution of the program. Without incremental
checkpointing, the worst overhead measured for any ap-
plication increased from 5.8% to 17%. Synchronizing the
checkpoints to form a consistent checkpoint increased the
running time of the applications studied by very little, 3%
at most, compared to optimistic checkpointing. In return,
consistent checkpointing limits rollback to the last consis-
tent checkpoint, avoids the domino effect, and does not
require garbage collection of obsolete checkpoints.

Acknowledgements

We would like to thank John Carter, Alan Cox, Pete Kele-
her, and Kai Li for their comments on earlier drafts of this
paper. We also wish to thank the referees for their sug-
gestions.

References

[1] M. Ahamad and L. Lin. Using checkpoints to local-
ize the effects of faults in distributed systems. In
Proceedings of the 8th Symposium on Reliable Dis-
tributed Systems, pages 1-11, October 1989.

[2

—_—

B. Bhargava and S-R. Lian. Independent checkpoint-
ing and concurrent rollback recovery for distributed
systems — an optimistic approach. In Proceedings of
the 7th Symposium on Reliable Distributed Systems,
pages 3-12, October 1988.

[3

—

B. Bhargava, S-R. Lian, and P-J. Leu. Experimental
evaluation of concurrent checkpointing and rollback-
recovery algorithms. In Proceedings of the Interna-
tional Conference on Data Engineering, pages 182—
189, March 1990.

[4] A. Borg, W. Blau, W. Graetsch, F. Herrmann,
and W. Oberle. Fault tolerance under UNIX.
ACM Transactions on Computer Systems, 7(1):1-24,
February 1989.

[5] D. Briatico, A. Ciuffoletti, and L. Simoncini. A dis-
tributed domino-effect free recovery algorithm. In
Proceedings of the 4th Symposium on Reliable Dis-
tributed Systems, pages 207-215, October 1984.

[6] K.M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems,
3(1):63-75, February 1985.

[7] D.R. Cheriton. The V distributed system. Commu-
nications of the ACM, 31(3):314-333, March 1988.

[8] F. Cristian and F. Jahanian. A timestamp-based
checkpointing protocol for long-lived distributed
computations. In Proceedings of the 10th Sympo-
stum on Reliable Distributed Systems, pages 12-20,
Bologna, Italy, September 1991.

[9] R. Fitzgerald and R.F. Rashid. The integration of
virtual memory management and interprocess com-
munication in accent. ACM Transactions on Com-
puter Systems, 4(2):147-177, May 1986.

[10] J.N. Gray. Notes on database operating systems.
In R. Bayer, R.M. Graham, and G. Seegmuller,
editors, Operating Systems: An Advanced Course,
volume 60 of Lecture Notes in Computer Science.
Springer-Verlag, 1978.

[11] S. Israel and D. Morris. A non-intrusive checkpoint-
ing protocol. In The Phoeniz Conference on Com-
munications and Computers, pages 413-421, 1989.

[12] D.B. Johnson. Distributed System Fault Tolerance
Using Message Logging and Checkpointing. PhD the-
sis, Rice University, December 1989.

[13] D.B. Johnson and W. Zwaenepoel. Recovery in
distributed systems using optimistic message log-
ging and checkpointing. Journal of Algorithms,
11(3):462-491, September 1990.

[14) M.F. Kaashoek, R. Michiels, H.E. Bal, and A.S.
Tanenbaum. Transparent fault-tolerance in parallel
orca programs. In Symposium on Ezperiences with
Distributed and Multiprocessor Systems III, pages
297-312, March 1992.

[15] R. Koo and S. Toueg. Checkpointing and rollback-
recovery for distributed systems. IEEE Transactions
on Software Engineering, SE-13(1):23-31, January
1987.

[16] T.H. Lai and T.H. Yang. On distributed snap-
shots. Information Processing Letters, 25:153-158,
May 1987.

[17] P. Leu and B. Bhargava. Concurrent robust check-
pointing and recovery in distributed systems. In Pro-
ceedings of the International Conference on Data En-
gineering, February 1988.

(18]

(19]

(22]

(23]

(24]

(28]

[26]

(27]

(28

(e}

(29]

[30]

K. Li, J.F. Naughton, and J.S. Plank. Real-time,
concurrent checkpoint for parallel programs. In Pro-
ceedings of the 1990 Conference on the Principles
and Practice of Parallel Programming, pages 79-88,
March 1990.

K. Li, J.F. Naughton, and J.S. Plank. Checkpoint-
ing multicomputer applications. In Proceedings of
the 10th Symposium on Reliable Distributed Systems,
pages 1-10, October 1991.

B. Randell. System structure for software fault toler-

ance. IEEE Transactions on Software Engineering,
SE-1(2):220-232, June 1975.

M. Rosenblum and J.K. Ousterhout. The design and
implementation of a log-structured file system. In
Proceedings of the 13th ACM Symposium on Operat-
ing Systems Principles, pages 1-15, October 1991.

D.L. Russell. State restoration in systems of commu-
nicating processes. IEEE Transactions on Software
Engineering, SE-6(2):183-194, March 1980.

R.D. Schlichting and F.B. Schneider. Fail-stop pro-
cessors: An approach to designing fault-tolerant
computing systems. ACM Transactions on Com-
puter Systems, 1(3):222-238, August 1983.

M. Spezialetti and P. Kearns. Efficient distributed
snapshots. In Proceedings of the 6th International
Conference on Distributed Computing Systems, pages
382-388, May 1986.

R.E. Strom and S.A. Yemini. Optimistic recovery
in distributed systems. ACM Transactions on Com-
puter Systems, 3(3):204-226, August 1985.

Y. Tamir and C.H. Séquin. Error recovery in mul-
ticomputers using global checkpoints. In 1984 In-
ternational Conference on Parallel Processing, pages
32-41, August 1984.

M. Theimer, K. Lantz, and D.R. Cheriton. Preempt-
able remote execution facilities in the V-system. In
Proceedings of the 10th ACM Symposium on Operat-
ing Systems Principles, pages 2-12, December 1985.

Z. Tong, R.Y. Kain, and W.T. Tsai. A lower over-
head checkpointing and rollback recovery scheme for
distributed systems. In Proceedings of the 8th Sym-
posium on Reliable Distributed Systems, pages 1220,
October 1989.

K. Venkatesh, T. Radhakrishnan, and H.F. Li. Op-
timal checkpointing and local recording for domino-
free rollback recovery. Information Processing Let-
ters, 25:295-303, July 1987.

K.-L. Wu and W.K. Fuchs. Recoverable distributed
shared memory. IEEE Transactions on Computers,
39(4):460-469, April 1990.

47

