

Computational gene finding

Devika Subramanian Comp 470

Outline (3 lectures)

.c 1

The biological context
Markov models and Hidde

Markov models and Hidden Markov models

Lec 2

Ab-initio methods for gene finding

Comparative methods for gene finding

Lec 3 Evaluating gene finding programs

(c) Devika Subramanian, 2007

The biological context

- Introduction to the human genome and genes
- The central dogma: transcription and translation

(c) Devika Subramanian, 2007

2

Facts about the human genome

- The human genome contains 3 billion chemical nucleotide bases (A, C, T, and G).
- About 30,000 genes are estimated to be in the human genome. Chromosome 1 (the largest human chromosome) has the most genes (2968), and the Y chromosome has the fewest (231).

(c) Devika Subramanian, 2007

More facts

 The average gene consists of 3000 bases, but sizes vary greatly, with the largest known human gene being dystrophin at 2.4 million bases.

(c) Devika Subramanian, 2007

5

More facts

- Genes appear to be concentrated in random areas along the genome, with vast expanses of non-coding DNA between.
- About 2% of the genome encodes instructions for the synthesis of proteins.
- We do not know the function of more than 50% of the discovered genes.

(c) Devika Subramanian, 2007

More facts

- The human genome sequence is almost (99.9%) exactly the same in all people. There are about 3 million locations where single-base DNA differences occur in humans (Single Nucleotide Polymorphisms or SNPs).
- Over 40% of the predicted human proteins share similarity with fruit-fly or worm proteins.

(c) Devika Subramanian, 2007

7

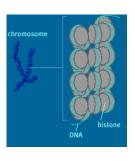
A great site to learn more

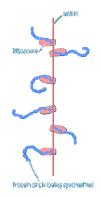
http://www.dnai.org/index.htm

(c) Devika Subramanian, 2007

Genome sizes

Organism	Genome Size (Bases)	Estimated Genes
Human (<i>Homo sapiens</i>)	3 billion	30,000
Laboratory mouse (<i>M. musculus</i>)	2.6 billion	30,000
Mustard weed (<i>A. thaliana</i>)	100 million	25,000
Roundworm (<i>C. elegans</i>)	97 million	19,000
Fruit fly (<i>D. melanogaster</i>)	137 million	13,000
Yeast (<i>S. cerevisiae</i>)	12.1 million	6,000
Bacterium (<i>E. coli</i>)	4.6 million	3,200
Human immunodeficiency virus (HIV)	9700	9
(c) Devika Subramanian, 2007		9


Codons


- 3 consecutive DNA bases code for an amino acid. There are 64 possible codons, but only 20 amino acids (some amino acids have multiple codon representations).
- Four special codons: start codon (ATG) and three stop codons (TAG, TGA, TAA). They indicate the start and end of translation regions.

(c) Devika Subramanian, 2007

The central dogma

mRNA produced by transciption

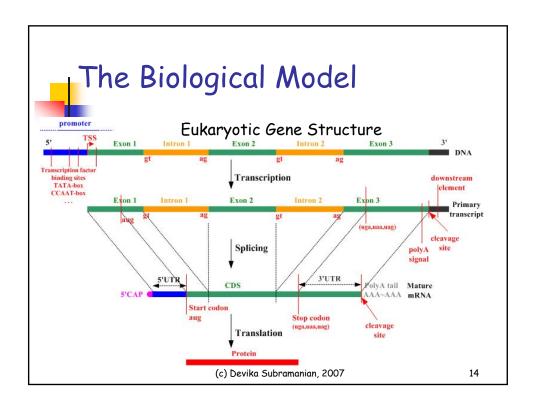
 $DNA \rightarrow mRNA \rightarrow proteins$

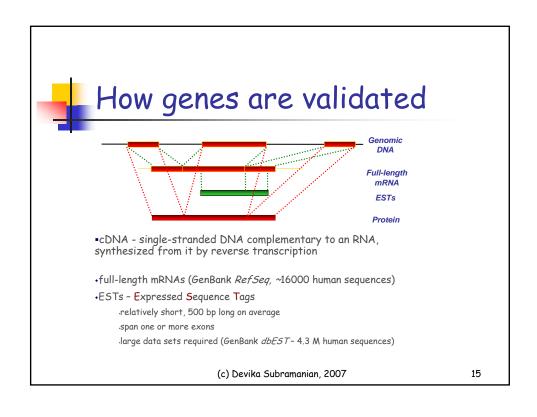
(c) Devika Subramanian, 2007

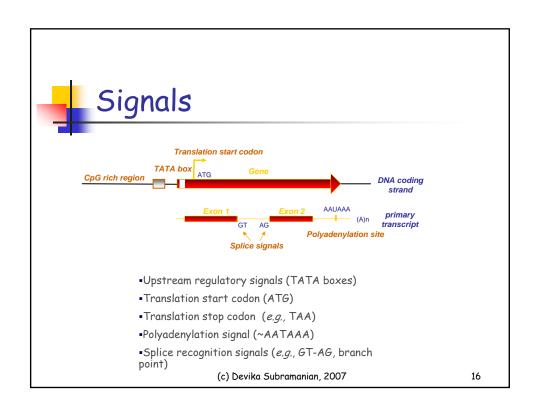
11

Transcription

- When a gene is "expressed" the sequence of nucleotides in the DNA is used to determine the sequence of amino acids in a protein in a two step process.
- First, the enzyme RNA polymerase uses one strand of the DNA as a template to synthesize a complementary strand of messenger RNA (mRNA) in a process called transcription. RNA is identical to DNA except that in RNA T is replaced with U (for uracil). Also, unlike DNA, RNA usually exists as a single stranded molecule.


(c) Devika Subramanian, 2007




Splicing and Translation

- In eukaryotes, after a gene is transcribed the introns are removed from the mRNA and the adjacent exons are spliced together in the nucleus prior to translation outside the nucleus.
- After the mRNA for a particular gene is made it is used as a template with which ribosomes synthesize the protein in a process called translation.

(c) Devika Subramanian, 2007

Computational gene finding

- Gene finding in prokaryotes
- Gene finding in eukaryotes
 - Ab initio
 - Comparative

(c) Devika Subramanian, 2007

17

Finding genes in prokaryotes

- Prokaryotes are single-celled organisms without a nucleus (e.g., bacteria).
- Few introns in prokayotic cells. Over 70% of H. influenzae genome codes for proteins.
- No introns in coding region.

gene1

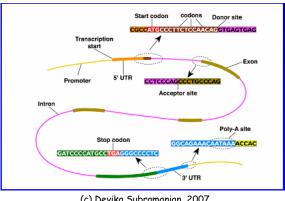
gene2

gene3

(c) Devika Subramanian, 2007

Finding genes in prokaryotes

- Main idea: if bases were drawn uniformly at random, then a stop codon is expected once every 64/3 (about 21) bases. Since coding regions are terminated by stop codons, a simple technique to find genes is to look for long stretches of bases without a stop codon. Once a stop codon is found, we work backward to find the start codon corresponding to the gene.
- Main problems: misses short genes, overlapping ORFs.


(c) Devika Subramanian, 2007

19

Computational gene finding

Gene finding in eukaryotic DNA

(c) Devika Subramanian, 2007

Ab initio methods

- Use information embedded in the genomic sequence exclusively to predict the gene structure.
- Find structure G representing gene boundaries + internal gene structure which maximizes the probability P(G|genomic sequence).
- Hidden Markov models are the predominant generative method for modeling the problem.

(c) Devika Subramanian, 2007

21

Ab-initio methods

- Advantages
 - Intuitive, natural modeling
 - Prediction of 'novel' genes, i.e., with no a priori known cDNA or protein evidence
- Caveats
 - Not effective in detecting alternatively spliced forms, interleaved or overlapping genes
 - Difficulties with gene boundary identification
 - Potentially large number of false positives with over-fitting

(c) Devika Subramanian, 2007