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Computational gene finding
Gene finding in prokaryotes
Gene finding in eukaryotes

Ab initio
Comparative

(c) Devika Subramanian, 2007 18

Finding genes in prokaryotes
Prokaryotes are single-celled 
organisms without a nucleus (e.g., 
bacteria).
Few introns in prokayotic cells. Over 
70% of H. influenzae genome codes 
for proteins.
No introns in coding region.

gene1                gene2                       gene3
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Finding genes in prokaryotes
Main idea: if bases were drawn uniformly 
at random, then a stop codon is expected 
once every 64/3 (about 21) bases. Since 
coding regions are terminated by stop 
codons, a simple technique to find genes is 
to look for long stretches of bases without 
a stop codon. Once a stop codon is found, 
we work backward to find the start codon
corresponding to the gene.
Main problems: misses short genes, 
overlapping ORFs.
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Segment of Influenza Virus
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?d
b=nucleotide&val=CY018024
1151 bp segment of Influenza B Virus.
Has two genes: 4 to 750 and 750 to 1079 
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The sequence
1  aaaatgtcgc tgtttggaga cacaattgcc tacctgcttt cattgacaga agatggagaa
61  ggcaaagcag aactagcaga aaaattacac tgttggttcg gtgggaaaga atttgaccta
121 gactctgcct tggaatggat aaaaaacaaa agatgcttaa ctgatataca aaaagcacta
181 attggtgcct ctatctgctt tttaaaaccc aaagaccagg aaaggaaaag aagattcatc
241 acagagcctc tatcaggaat gggaacaaca gcaacaaaaa agaaaggcct gattctagct
301 gagagaaaaa tgagaagatg tgtgagcttt catgaagcat ttgaaatagc agaaggccat
361 gaaagctcag cgctactata ttgtctcatg gtcatgtacc tgaatcctgg aaattattca
421 atgcaagtaa aactaggaac gctctgtgct ttgtgcgaga aacaagcatc acattcacac
481 agggctcata gcagagcagc gagatcttca gtgcccggag tgagacgaga aatgcagatg
541 gtctcagcta tgaacacagc aaaaacaatg aatggaatgg gaaaaggaga agacgtccaa

601 aagctggcag aagagctgca aagcaacatt ggagtattga gatctcttgg agcaagtcaa
661 aagaatgggg aaggaattgc aaaggatgta atggaagtgc taaagcagag ctctatggga

721 aattcagctc ttgtgaagaa atatctataa tgctcgaacc atttcagatt ctttcaattt
781 gttcttttat cttatcagct ctccatttca tggcttggac aatagggcat ttgaatcaaa
841 taaaaagagg agtaaacatg aaaatacgaa taaaaggtcc aaacaaagag acaataaaca
901 gagaggtatc aattttgaga cacagttacc aaaaagaaat ccaggccaaa gaaacaatga
961 aggaagtact ctctgacaac atggaggtat tgagtgacca catagtgatt gaggggcttt

1021 ctgccgaaga gataataaaa atgggtgaaa cagttttgga gatagaagaa ttgcattaaa
1081 ttcaattttt tactgtattt cttattatgc atttaagcaa attgtaatca atgtcagcaa
1141 ataaactgga a 
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GLIMMER
State of the art prokaryotic gene finder. 
Based on interpolated Markov models.
Available at 
http://cbcb.umd.edu/software/glimmer
98% accuracy in identifying viral and 

microbial genes. 2007 paper in Bioinformatics 
that shows latest version of tool.
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Computational gene finding

Gene finding in eukaryotic DNA

(c) Devika Subramanian, 2007 24

Structure of a human gene

Exon-intron structure
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atg

tga

ggtgag

ggtgag

ggtgag

caggtg

cagatg

cagttg

caggcc
ggtgag
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Ab initio methods
Use information embedded in the genomic 
sequence exclusively to predict the gene 
structure.  
Find structure G representing gene boundaries + 
internal gene structure which maximizes the 
probability P(G|genomic sequence).
Hidden Markov models are the predominant 
generative method for modeling the problem.
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Ab-initio methods
Advantages

Intuitive, natural modeling
Prediction of ‘novel’ genes, i.e., with no a priori 
known cDNA or protein evidence

Caveats
Not effective in detecting alternatively spliced 
forms, interleaved or overlapping genes
Difficulties with gene boundary identification
Potentially large number of false positives with 
over-fitting
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A simple example: CpG
Islands

CpG nucleotides in the genome are frequently 
methylated. (Write CpG not to confuse with CG 
base pair)

C → methyl-C → T
Methylation often suppressed around genes, 

promoters→ CpG islands
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Example: CpG Islands

In CpG islands,
CG is more frequent than in the rest of the 
genome
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Two problems

Given a short DNA sequence, does it 
come from a CpG island or not?

How to find the CpG islands in a long 
sequence?

Is this part of a CpG island or not?
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Generative models

CpG
Model

nonCpG
Model

ACTGACCT……… TCGAGCTTA………

Models generate sequences of strings in the A,T,C,G
alphabet. Model parameters are tuned to reflect
characteristics of CpG and non CpG islands.
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Markov processes: a quick intro
We are interested in predicting weather, 
which can be either be sunny (s) or rainy 
(r).
The weather on a given day depends only on 
the weather on the previous day.  

)|(),...,|( 111 −− = tttt wwPwwwP

This is the Markov property.
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Markov process example
We have knowledge of the transition 
probabilities between sunny and rainy days.

We know the initial probabilities of s and r. 

⎥
⎦

⎤
⎢
⎣

⎡
 0.5   0.5
 0.1   9.0s

s      r

r
Rows of the transition
matrix sum to 1.

s r
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Generating weather 
sequences

Let the probabilities of weather on the 
first day be [0.5  0.5]. Lets say we start 
with a sunny day.
Now we consult our transition matrix and 
find that P(w|s) = [0.9 0.1]. It is more likely 
that the next day will be sunny too.
We repeat this process, flipping coins 
biased by the probability P(wt|wt-1) to get a  
sequence representing weather for a 
consecutive set of days.



10

(c) Devika Subramanian, 2007 35

Generating sequences (Take 
2)

s rs

⎥
⎦

⎤
⎢
⎣

⎡
 0.5   0.5
 0.1   9.0s

s      r

r

sequence

s

0.9
0.1 0.5

0.5

s

r

s rs

0.1 0.5

0.5

s rs

0.1 0.5

0.5

0.9

0.9
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Prediction
Suppose day is rainy . We will represent 
this as a vector of probabilities over the 
two values.

How do we predict weather on day 2 given 
pi(1) and the transition probabilities P?
From P, we can see that the probability of 
day 2 being sunny is .5, and for being rainy 
is 0.5

1];  0[)1( =π

0.5];  5.0[*)1( =Pπ
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Probability of a sequence
What is the probability of observing 
the sequence “rrrrrrs”?

7
1

7..2

)5.0()|()(                        
)|()|()|()|()|()|()()(

==

==

−
=
∏ t
t

t xxPr
rsPrrPrrPrrPrrPrrPrrrrrrrsXP

π

π

r r sr r r r
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Which weather pattern is 
more likely?

Given a transition model

And an initial state distribution: [0.5   0.5]
And two sequences: rrrrrrs and ssssssr
Which is more likely, given the model?

⎥
⎦

⎤
⎢
⎣

⎡
 0.5   0.5
 0.1   9.0s

s      r

r
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Comparing likelihoods

1.0*)9.0(*5.0)|()]|()[()|(
)5.0()|()]|()[()|(

55

75

===

===

srPssPsModelssssssrXP
rsPrrPrModelrrrrrrsXP

π

π
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Markov models (summary)
States: S = {s1,…,sN}, N states
Transition probability: 

aij = P(Xt+1=sj|Xt=si), i,j in [1..N]
Initial state probability

pii = P(X1=si), i in [1..N]

Model generates sequences of states from S, and 
we can compute how likely a sequence is given the
model.
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Markov models for CpG
islands

A T

GC
aGTaAC

aGC

aAT

TGCA+

.182.384.355.079T

.125.375.339.161G

.188.274.368.171C

.120.426.274.180A
TGCA-

.292.292.239.177T

.208.298.246.248G

.302.078.298.322C

.210.285.205.300A

A state for each of the four letters A,C, G, and T in the DNA alphabet

∑ +

+
+ =

t' st'

st
st

c
ca

From a set of known
CpG islands, and non CpG
islands, estimate the 
transition probabilities
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Using the model 
To use the model for classification of a given 
sequence, calculate the log-odds ratio. 
Is the sequence more likely to come from a CpG
island or a non-CpG region?

0
)|(

)|(log

1
)|(

)|(
)|()|(

>

>

>

nonCpGxP
CpGxP

nonCpGxP
CpGxP

nonCpGxPCpGxP

Log-odds ratio
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The log-odds ratio

−

+

=
−

−∑==
ii

ii

xx

xxL

i a
a

)P(x|nonCpG
P(x|CpG)S(x)

1

1

1
loglog
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Histogram of log-odds 
scores

-0.4    -0.3    -0.2    -0.1    0    0.1    0.2    0.3
0

5

10

CpG
islands

Non-
CpG

Given a short sequence x, does it come from CpG island (Yes-No question)?

Decision rule: if S(x) > 0 then CpG else non-Cpg

threshold
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How to locate CpG islands?
Given a DNA sequence, find the CpG islands 
in it, if any.
Approach: Calculate the log-odds score for 
a window of w nucleotides around every 
base in the sequence. Predict as CpG
islands, those with a positive log-odds 
score.
Problem: What should the size of the 
window w be? Predictions are sensitive to 
choice of w.

(c) Devika Subramanian, 2007 46

The occasionally dishonest 
casino

A casino uses a fair coin most of the time, but 
occasionally they switch to a loaded coin. You can’t 
see which coin they are using, just the results of 
the flips (heads and tails) are visible.

s LF

0.05 0.9

0.1

0.95

h:0.1
t:0.9

h:0.5
t:0.5

Hidden state

Observables
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Generating coin flips
Start in one of the states, F or L (i.e., 
pick a fair or loaded coin to start 
with) (initial probabilities). 
Move to the next state (F or L), 
based on the transition probabilities. 
Generate an h or t based on the 
emission probabilities of that state.
Repeat above step.

(c) Devika Subramanian, 2007 48

Generating flips (take 2)

s LF

0.05 0.9

0.1

0
.
9

0.95

h:0.1
t:0.9

h:0.5
t:0.5

State sequence: FFFL   (unobserved)
Obs sequence  : htt (observed)

F LFF

h h t
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Hidden Markov Models
S = {s1,…,sN}, N states
O = {o1,…,oM}, M observation symbols
aij = P(St+1=sj|St=si), i,j in [1..N]; transition 
probabilities
bi(k)=P(Et=ok|St=si), k in [1..M],i in [1..N]; 
emission probabilities
pii = P(S1=si), i in [1..N]; initial state 
probabilities

),,( πλ BA= specifies the HMM model
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Dishonest casino as an HMM
N = 2, S={F,L}
M=2, O = {h,t}
A =

B=

.

⎥
⎦

⎤
⎢
⎣

⎡
 0.90   0.10
 0.05   0.95F

F      L

L

⎥
⎦

⎤
⎢
⎣

⎡
0.9  0.1
0.5  5.0F

L

h    t

0]  1[=π
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A generative model for CpG
islands

There are two hidden states: CpG and non-CpG. 
Each state is characterized by emission 
probabilities of the 4 bases. You can’t see which 
state the model is,  only the emitted bases are 
visible. 

CpG Non-CpG

A:
C:
G:
T:

Hidden state

Observables
A:
C:
G:
T:
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Filtering or the forward 
computation

Given an HMM model (A,B,pi), and an 
observation sequence o1…ot, can we find the 
most likely hidden state at time t, St?

P(St|o1…ot): filtering 

Observation sequence:    h h t t t t

What is the hidden
state here (F or L)?
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Filtering (contd.)

S1S0 S2 S3 S4 S5 S6

h          h           t            t          t          t

s LF

0.05 0.9

0.1

0
.
9

0.95

h:0.1
t:0.9

h:0.5
t:0.5

[1  0]

What is the distribution of S1?
Since, s0=F, we can say that
P(S1|S0)=[0.95  0.05], based on the
transition probabilities alone. 
But is that all we know?
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More filtering

S1S0 S2 S3 S4 S5 S6

h          h           t            t          t          t

[1  0]

s LF

0.05 0.9

0.1

0
.
9

0.95

h:0.1
t:0.9

h:0.5
t:0.5

We have also observed h at time 1.
How can we fold it in into the 
assessment of the distribution of S1?



20

(c) Devika Subramanian, 2007 55

Filtering (contd.)

)(
)()|()|(

1

111
11 oP

SPSoPoSP =

)05.0)(1.0(05.0)|()|(
)95.0)(5.0(95.0)|()|(

11

11

αα
αα

====
====

LhPhoLSP
FhPhoFSP

1)05.0)(1.0()95.0)(5.0( =+αα

Therefore, P(S1)=[0.99  0.01]
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Filtering computation

StSt-1

[p   1-p]
F       L

ot

)...|()|()|()...,|( 111111
1

−−−− ∑
−

= tt
s

ttttttt oosPsSPSoPoooSP
t

Recursively
computed
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Summary: filtering

nii

aiobj

nii
sSooPi

ooScPooSP

Ttnj

n

i
ijttjt

i

ittt

tttt

≤≤

=

≤≤=
==

=

−≤≤≤≤

=
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1  ),( :nTerminatio

 ,)()()(  :Recursion

1   ,)(   :Initialize
).,,...,()(   Define

).,...,,(),...,|(  Find

T

11,0 
1

11

0

1

11

α

αα

πα
α

Time complexity O(n2T)
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Smoothing/posterior decoding

S1S0 S2 S3 S4 S5 S6

h          h           t            t          t          t

Question: can we re-estimate the distribution at Sk where 
k < t, using information about the observed sequence upto
time t?
That is, what is P(Sk|o1…ot) ?



22

(c) Devika Subramanian, 2007 59

Backward computation

                 
),...,|()|,...,( ),...,|( 111 kkktktk ooSPSoocPooSP +=

Forward computation
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11,111
1
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=

+
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≤≤=
==

kTNikkj

N

j
ijk

T

iktkk

jobaci

Nii
sSooPi

ββ

β
β

Backward computation

Time complexity: O(n2T)
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Posterior decoding

                 
)()( ),...,|( 1 iicooiSP kktk αβ==
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Full Decoding
Given HMM model (A,B,pi), and an 
observation sequence o1…ot, can we find the 
most likely hidden state sequence s1…st?

argmax_{s1…st} P(s1…st| o1…ot)

(c) Devika Subramanian, 2007 62

The Viterbi algorithm

njTt

tjijtit

i

tttxxt

obaij
nii

ooiSssPi
t

≤≤−≤≤

++

−

=
≤≤=
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−

1,11

11

0
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11

δδ
πδ
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Computational complexity = O(Tn2)
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Learning an HMM: case 1
Given observation sequences, and the 
corresponding hidden state sequences, can 
we find the most likely model (A,B,pi) which 
generated it?

FF F L L F F

h          h           t            t          t          t

Training data
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Parameter estimation
Initial state distribution

Fraction of times state i is state 1 in training 
data

Transition probabilities
aij = (number of transitions from i to j)/(number 
of transitions from i)

Emission probabilities
bk(i) = (number of times k is emitted in state 
i)/(number of times state i occurs)
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Learning an HMM: case 2
Given just the observation sequences, 
can we find the most likely model     = 
(A,B,pi) which generated it? 

)|...(argmax 1 λ
λ

tooP

λ

Annotated training data is difficult to get; so we would
like to derive model parameters from observable
sequences.
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The EM algorithm
1. Guess a model
2. Use observation sequence to estimate 

transition probabilities, emission 
probabilities, and initial state probabilities.

3. Update model
4. Repeat 2 and 3 till no change in model

λ
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Re-estimating parameters
What is the probability of being in 
state i at time t and moving to state 
j, given the current model and the 
observation sequence O?

),| ,(),( 1 λξ OjSiSPji ttt === +
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Using forward and backward 
computation

∑∑
= =

++
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Re-estimating aij

The transition probabilities aij can be 
re-estimated as follows

∑∑

∑
−

= =

−

== 1

1 1'

1

1

)',(

),(
ˆ T

t

n

j
t

T
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ji
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a

ξ

ξ
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Initial state probabilities

γ t (i) = ξ t (i, j)
j=1

N

∑

Initial state probabilities are simply )(1 iγ

Expected number
of times in
state i
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Emission probabilities

i statein   timesofnumber  expected
k symbol observe and i statein   timesofnumber  expected)(ˆ =kbi

∑

∑
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=
=

= T

t
t
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1

1

)(
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)(ˆ
γ

γ
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The EM algorithm

)( and ),( iji tt γξ

1. Guess a model
2. Use observation sequence to estimate 

3. Use these estimates to recalculate

4. Repeat 2 and 3 till no change in model

),,( πλ ba=

)',','(' πλ ba=
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Summary of CpG island HMM
Given a DNA region x, Viterbi decoding predicts 
locations of CpG islands on it. 
Given a nucleotide xi, Viterbi decoding tells 
whether xi is in a CpG island in the most likely 
sequence.
Posterior decoding can assign locally optimal 
predictions of CpG islands.
A fully annotated training data set can be used to 
estimate the generating HMM.
Even without annotations, we can use the EM 
procedure to derive model parameters.
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How to design an HMM for a 
new problem

Architecture/topology design:
What are the states, observation symbols, and 
the topology of the state transition graph?

Learning/Training:
Fully annotated or partially annotated training 
datasets
Parameter estimation by maximum likelihood or by EM

Validation/Testing:
Fully annotated testing datasets
Performance evaluation (accuracy, specificity and 
sensitivity)


