

Computational gene finding

- Gene finding in prokaryotes
- Gene finding in eukaryotes
 - Ab initio
 - Comparative

(c) Devika Subramanian, 2007

Finding genes in prokaryotes

- Prokaryotes are single-celled organisms without a nucleus (e.g., bacteria).
- Few introns in prokayotic cells. Over 70% of H. influenzae genome codes for proteins.
- No introns in coding region.

gene1 gene2 gene3

(c) Devika Subramanian, 2007

18

Finding genes in prokaryotes

- Main idea: if bases were drawn uniformly at random, then a stop codon is expected once every 64/3 (about 21) bases. Since coding regions are terminated by stop codons, a simple technique to find genes is to look for long stretches of bases without a stop codon. Once a stop codon is found, we work backward to find the start codon corresponding to the gene.
- Main problems: misses short genes, overlapping ORFs.

(c) Devika Subramanian, 2007

Segment of Influenza Virus

- http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?d b=nucleotide&val=CY018024
- 1151 bp segment of Influenza B Virus.
- Has two genes: 4 to 750 and 750 to 1079

(c) Devika Subramanian, 2007

The sequence

1 aaa atg tcgc tgtttggaga cacaattgcc tacctgcttt cattgacaga agatggagac

1021 ctgcogaaga gataataaaa atgggtgaaa cagttttgga gatagaagaa ttgcat**†QQ**a 1081 ttcattttt tactgtattt cttattatga atttaagcaa attgtaatca atgtcagcaa 1141 ataaactgga a

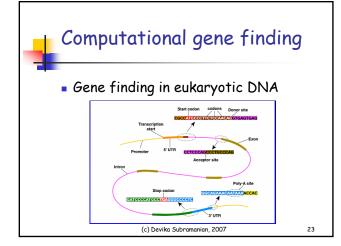
(c) Devika Subramanian, 2007

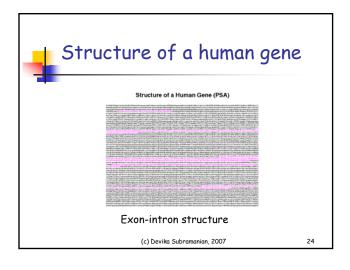
21

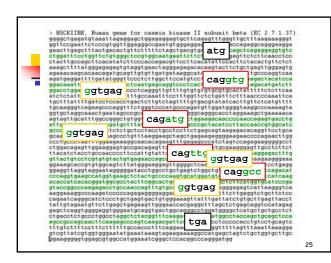
GLIMMER

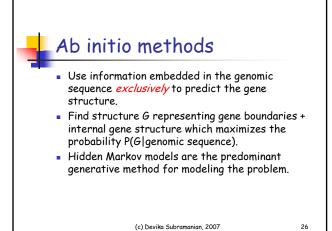
- State of the art prokaryotic gene finder. Based on interpolated Markov models.
- Available at http://cbcb.umd.edu/software/glimmer
- 98% accuracy in identifying viral and microbial genes. 2007 paper in Bioinformatics that shows latest version of tool.

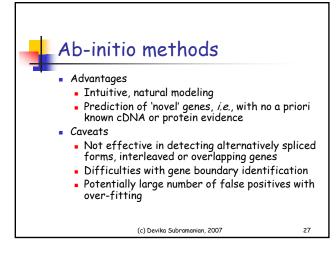
(c) Devika Subramanian, 2007

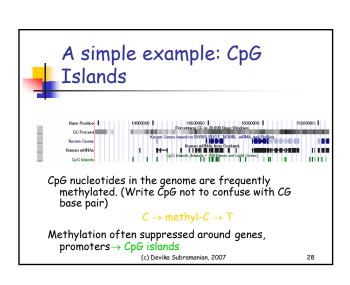


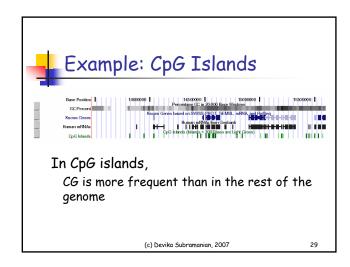


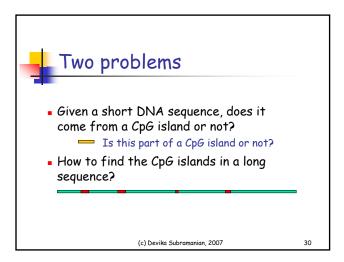


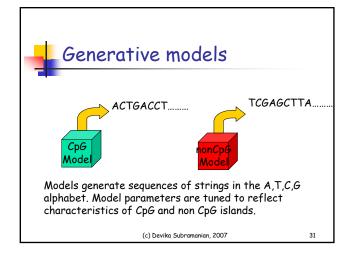


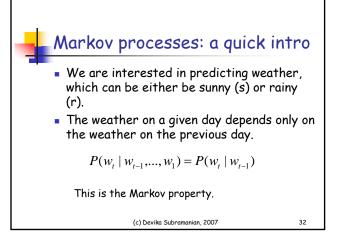












Markov process example

 We have knowledge of the transition probabilities between sunny and rainy days.

Rows of the transition matrix sum to 1.

$$\begin{array}{ccc}
s & r \\
s & 0.9 & 0.1 \\
r & 0.5 & 0.5
\end{array}$$

We know the initial probabilities of s and r.

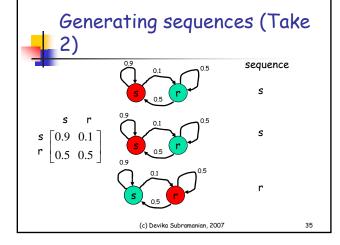
(c) Devika Subramanian, 2007

Generating weather sequences

- Let the probabilities of weather on the first day be [0.5 0.5]. Lets say we start with a sunny day.
- Now we consult our transition matrix and find that P(w|s) = [0.9 0.1]. It is more likely that the next day will be sunny too.
- We repeat this process, flipping coins biased by the probability P(w_t|w_{t-1}) to get a sequence representing weather for a consecutive set of days.

(c) Devika Subramanian, 2007

24



Prediction

 Suppose day is rainy. We will represent this as a vector of probabilities over the two values.

$$\pi(1) = [0 \ 1];$$

- How do we predict weather on day 2 given pi(1) and the transition probabilities P?
- From P, we can see that the probability of day 2 being sunny is .5, and for being rainy is 0.5

$$\pi(1) * P = [0.5 \ 0.5];$$

(c) Devika Subramanian, 2007

Probability of a sequence

• What is the probability of observing the sequence "rrrrrrs"?

 $P(X = rrrrrrs) = \pi(r)P(r \mid r)P(r \mid r)P(r \mid r)P(r \mid r)P(r \mid r)P(s \mid r)$ = $\pi(r) \prod_{i=1}^{n} P(x_i \mid x_{i-1}) = (0.5)^7$

37

(c) Devika Subramanian, 2007

Subramanian, 2007

Which weather pattern is more likely?

• Given a transition model

- And an initial state distribution: [0.5 0.5]
- And two sequences: rrrrrrs and ssssssr Which is more likely, given the model?

(c) Devika Subramanian, 2007

38

Comparing likelihoods

 $P(X = rrrrrs \mid Model) = \pi(r)[P(r \mid r)]^{5}P(s \mid r) = (0.5)^{7}$ $P(X = sssssr \mid Model) = \pi(s)[P(s \mid s)]^{5}P(r \mid s) = 0.5*(0.9)^{5}*0.1$

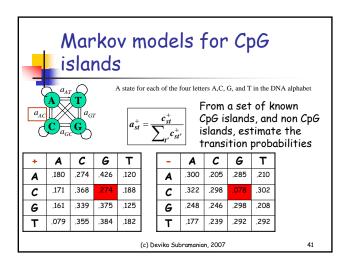
(c) Devika Subramanian, 2007

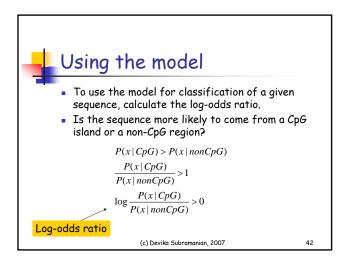
Markov models (summary)

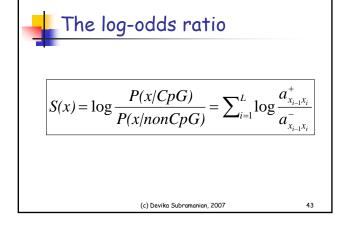
- States: $S = \{s_1, ..., s_N\}$, N states
- Transition probability:
 - $a_{ij} = P(X_{t+1} = s_i | X_t = s_i)$, i,j in [1..N]
- Initial state probability
 - pi_i = P(X₁=s_i), i in [1..N]

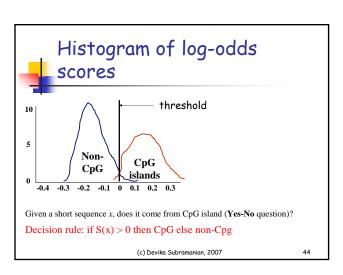
Model generates sequences of states from S, and we can compute how likely a sequence is given the model.

(c) Devika Subramanian, 2007









How to locate CpG islands?

- Given a DNA sequence, find the CpG islands in it, if any.
- Approach: Calculate the log-odds score for a window of w nucleotides around every base in the sequence. Predict as CpG islands, those with a positive log-odds score.
- Problem: What should the size of the window w be? Predictions are sensitive to choice of w.

(c) Devika Subramanian, 2007

45

The occasionally dishonest casino

 A casino uses a fair coin most of the time, but occasionally they switch to a loaded coin. You can't see which coin they are using, just the results of the flips (heads and tails) are visible.



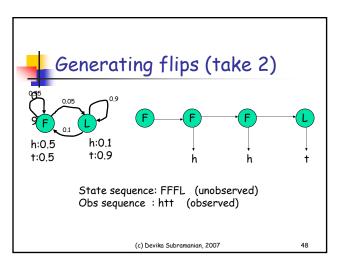
(c) Devika Subramanian, 2007

47

Generating coin flips

- Start in one of the states, F or L (i.e., pick a fair or loaded coin to start with) (initial probabilities).
- Move to the next state (F or L), based on the transition probabilities. Generate an h or t based on the emission probabilities of that state.
- Repeat above step.

(c) Devika Subramanian, 2007



Hidden Markov Models

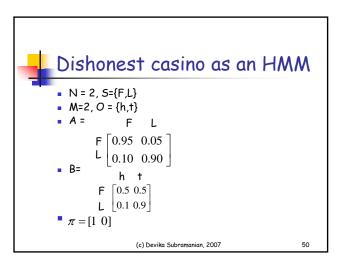
- $S = \{s_1, ..., s_N\}$, N states
- $O = \{o_1, ..., o_M\}$, M observation symbols
- $a_{ij} = P(S_{t+1} = s_j | S_t = s_i)$, i,j in [1..N]; transition probabilities
- b_i(k)=P(E_t=o_k|S_t=s_i), k in [1..M],i in [1..N];
 emission probabilities
- pi_i = P(S₁=s_i), i in [1..N]; initial state probabilities

 $\lambda = (A,B,\pi)$ specifies the HMM model

(c) Devika Subramanian, 2007

49

51



A generative model for CpG islands

There are two hidden states: CpG and non-CpG. Each state is characterized by emission probabilities of the 4 bases. You can't see which state the model is, only the emitted bases are visible.

(c) Devika Subramanian, 2007

A: A: C: C: Observables
G: G: T: T:

4

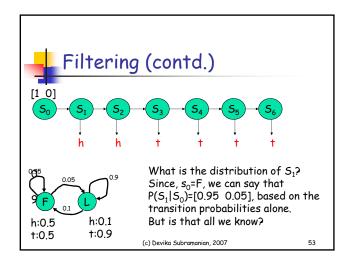
Filtering or the forward computation

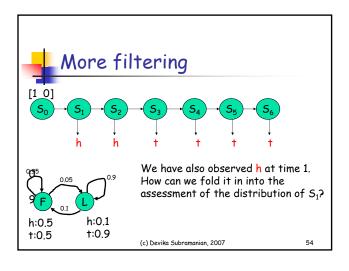
- Given an HMM model (A,B,pi), and an observation sequence o_{1...o₁}, can we find the most likely hidden state at time t, S₁?
 - $P(S_t|o_1...o_t)$: filtering

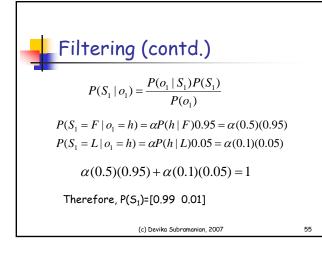
Observation sequence: hhtttt

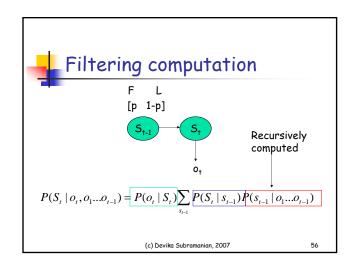
What is the hidden state here (F or L)?

(c) Devika Subramanian, 2007









Summary: filtering

Find $P(S_t | o_1,...,o_t) = cP(S_t, o_1,...,o_t)$.

Define $\alpha_{t}(i) = P(o_{1},...,o_{t}, S_{t} = s_{i}).$

Initialize: $\alpha_0(i) = \pi_i$, $1 \le i \le n$

Recursion: $\alpha_{t+1}(j) = b_j(o_{t+1}) \sum_{i=1}^n \alpha_t(i) a_{ij}, \ 0 \le j \le n, 1 \le t \le T-1$

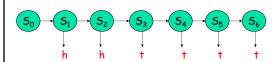
Termination : $\alpha_{\rm T}(i)$, $1 \le i \le n$

Time complexity O(n2T)

(c) Devika Subramanian, 2007

57

Smoothing/posterior decoding



Question: can we re-estimate the distribution at S_k where $k < \tau,$ using information about the observed sequence upto time $\tau ?$

That is, what is $P(S_k|o_1...o_t)$?

(c) Devika Subramanian, 2007

Backward computation

Backward computation

$$P(S_k | o_1,...,o_t) = cP(o_{k+1},...,o_t | S_k) P(S_k | o_1,...,o_k)$$

Forward computation

Define $\beta_k(i) = P(o_{k+1},...,o_t | S_k = s_i)$.

Initialize: $\beta_T(i) = 1$, $1 \le i \le N$.

Recursion: $\beta_k(i) = c \sum_{j=1}^{N} a_{ij} b_j(o_{k+1}) \beta_{k+1}(j), 1 \le i \le N, T-1 \le k \le 1$

Time complexity: O(n2T)

(c) Devika Subramanian, 2007

Posterior decoding

$$P(S_k = i | o_1,...,o_t) = c\beta_k(i)\alpha_k(i)$$

) Devika Subramanian, 2007

60

Full Decoding

- Given HMM model (A,B,pi), and an observation sequence o₁...o_t, can we find the most likely hidden state sequence s₁...s_t?
 - $argmax_{s_1...s_t} P(s_1...s_t | o_1...o_t)$

(c) Devika Subramanian, 2007

The Viterbi algorithm

$$\delta_t(i) = \max_{s_1, \dots, s_{t-1}} P(s_1, \dots, s_{t-1}, S_t = i, o_1, \dots, o_t)$$

Initialize: $\delta_0(i) = \pi_i, 1 \le i \le n$

Recursion: $\delta_{t+1}(j) = \max \delta_t(i) a_{ij} b_j(o_{t+1}),$

 $1 \le t \le T - 1, 1 \le j \le n$

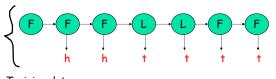
Computational complexity = $O(Tn^2)$

(c) Devika Subramanian, 2007

62

Learning an HMM: case 1

 Given observation sequences, and the corresponding hidden state sequences, can we find the most likely model (A,B,pi) which generated it?



Training data
(c) Devika Subramanian, 2007

Parameter estimation

- Initial state distribution
 - Fraction of times state i is state 1 in training data
- Transition probabilities
 - a_{ij} = (number of transitions from i to j)/(number of transitions from i)
- Emission probabilities
 - b_k(i) = (number of times k is emitted in state i)/(number of times state i occurs)

(c) Devika Subramanian, 2007

Learning an HMM: case 2

 Given just the observation sequences, can we find the most likely model λ = (A,B,pi) which generated it?

$$\underset{\lambda}{\operatorname{argmax}} P(o_1...o_t \mid \lambda)$$

Annotated training data is difficult to get; so we would like to derive model parameters from observable sequences.

(c) Devika Subramanian, 2007

The EM algorithm

- Guess a model λ
- Use observation sequence to estimate transition probabilities, emission probabilities, and initial state probabilities.
- Update model
- Repeat 2 and 3 till no change in model

(c) Devika Subramanian, 2007

Re-estimating parameters

 What is the probability of being in state i at time t and moving to state j, given the current model and the observation sequence O?

$$\xi_t(i, j) = P(S_t = i, S_{t+1} = j \mid O, \lambda)$$

(c) Devika Subramanian, 2007

Using forward and backward computation

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{n}\sum_{i=1}^{n}\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}$$

(c) Devika Subramanian, 2007

Re-estimating a_{ij}

 The transition probabilities a_{ij} can be re-estimated as follows

$$\hat{a}_{ij} = rac{\sum\limits_{t=1}^{T-1} \xi_t(i,j)}{\sum\limits_{t=1}^{T-1} \sum\limits_{j'=1}^{n} \xi_t(i,j')}$$

(c) Devika Subramanian, 2007

Initial state probabilities

$$\gamma_{\iota}(i) = \sum_{j=1}^{N} \xi_{\iota}(i,j) \qquad \begin{array}{l} \text{Expected number} \\ \text{of times in} \\ \text{state i} \end{array}$$

Initial state probabilities are simply $\gamma_1(i)$

(c) Devika Subramanian, 2007

70

Emission probabilities

 $\hat{b_i}(k) = \frac{\text{expected number of times in state i and observe symbol k}}{k}$ expected number of times in state i

$$\hat{b_i}(k) = \frac{\sum_{t=1}^{T} \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)}$$

(c) Devika Subramanian, 2007

The EM algorithm

- Guess a model $\lambda = (a, b, \pi)$
- 2. Use observation sequence to estimate

$$\xi_t(i, j)$$
 and $\gamma_t(i)$

3. Use these estimates to recalculate

$$\lambda' = (a', b', \pi')$$

4. Repeat 2 and 3 till no change in model

(c) Devika Subramanian, 2007

Summary of CpG island HMM

- Given a DNA region x, Viterbi decoding predicts locations of CpG islands on it.
 Given a nucleotide x_i, Viterbi decoding tells whether x_i is in a CpG island in the most likely sequence.
- Posterior decoding can assign locally optimal predictions of CpG islands.
 A fully annotated training data set can be used to estimate the generating HMM.
- Even without annotations, we can use the EM procedure to derive model parameters.

(c) Devika Subramanian, 2007