How to design an HMM for a
i new problem

= Architecture/topology design:

= What are the states, observation symbols, and
the topology of the state transition graph?

= Learning/Training:
= Fully annotated or partially annotated training
datasets
= Parameter estimation by maximum likelihood or by EM

= Validation/Testing:

= Fully annotated testing datasets

= Performance evaluation (accuracy, specificity and
sensitivity)
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i HMM model structure

= Duration modeling

5
0.05 0.9

o Sl
h:0.5 h:0.1
t:0.5 +:0.9

What is the probability of staying with
the fair coin for T time steps?
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i Inherent limitation of HMMs

= The duration in state F follows an
exponentially decaying distribution called a
geometric distribution.

P(X =FT)=(0.95)""(0.05)

= The geometric distribution gives too much
probability to short sequences of Fs and Ls
and too little fo medium and long sequences
of Fs and Ls.

(c) Devika Subramanian, 2007 76

i Duration modeling

= To obtain non-geomeftric length
distributions, we use an array of n F
states, as follows:

P : P
3' s s . P(|X|=L>=[rf:11jp“(1—p>”

= Generated length distribution is a
hegative binomial.
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i Why does this matter?

—
Exon length dist

Geometric dist

» Length of stay in "Exon” state determines length
of predicted exons. Very short exons are rare.

= Similarly for introns. Introns shorter than 30 bp
do not exist.

(c) Devika Subramanian, 2007 78

Length distributions of exons
and introns

Length distributions of human introns and initial, internal and terminal exons

70 _(b) Initial exons

o _(a) Introns

No. of Introns

of Exons
of Exons

No.




Generalized HMMs (semi-Markov
HMMs)

= Each state has a specified length distribution.

PE PI No self-transitions to

generate extra symbols

= Pick a state to start at t=1.
= Repeat

= Pick the length of stay (d) in current state from
distribution P.

= Emit d symbols in current state.

= Pick a new state (according to a matrix) and transition to
it at time t+d

(c) Devika Subramanian, 2007 80

Example

Hidden Semi-Markov

‘_Q:%\U/beH¥/ﬂ
\ ' / \ \

(ACC) (GTATATTCAG) (GGCTG) (GTTATTTAG) (CTAGG )

Hidden states semi-Markov;
observable generated from hidden

Multiple symbols emitted in each state. One to one mapping between
symbols and hidden states is lost in the generalized HMM.
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i Viterbi algorithm for gHMMs

= Just like Viterbi for HMMs, but we use the entire stay
in state instead of a state at a given time.

e

t-k-1  t-k t

. .\ Probability of most likely path
é‘t (I) = max max ft,i (k’ ]) ending at t with stay of k+1 in
k=0.1-1  j=i state i following a stay in state

ft,i (k’ J) = {H bi (Ot—r)j||i (k)aji§t—k—1(j)
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i Genscan

= The Genscan HMM model
= Training Genscan
= Validating Genscan
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Gene structure assumed by
Genscan

Structure of a Typical Human Gene

5-10 Coding Exons
5"UTR 3 UTR

Promoter IS’SS 3-'33' PolyA

Y \ Signal

donor site  acceptor site
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i A simple model

Promotor Intergenic

Single exon gene

5 UTR :‘ :0 JUTR

Initial > :‘ Terminal

Exon In¥ron Exon
Im‘elal Exon
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i Exon phases

Need to keep track of codon position in exon.
Q Terminal
/l Exon

O: actgacgttcgt
1. actgacgttegt
2: actgacgttcgt

Initial
Exon

(c) Devika Subramanian, 2007 86

Genscan's architecture (1)

= HMM states for exons and introns in
three different phases, single exon,
5" and 3’ UTRs, promoter region,
polyA site and intergenic region.

= Explicit length modeling of introns
and exons.
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(“Prediction of complete gene structures in human genomic DNA”(1997) Burge and Karlin, JIMB 268, p. 86)

i Genscan HMM

(-) @sianay

region

>
s

(+) pJremio4
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i Genscan model components

= Vector of initial probabilities: m
= State Transition probability Matrix: a

= Set of length distributions: f,
conditional on state q.

= Emission probabilities: P(s|q,d)
conditional on state and length.
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i Isochore groups

Group I IT IIT IV
C + G% range <43 43-51 51-57 >57
Number of genes 65 115 29 101
Est. proportion single-exon genes 0.16 0.19 0.23 0.16
Codelen: single-exon genes (bp) 1130 1251 1304 1137
Codelen: multi-exon genes (bp) 902 908 1118 1165
Introns per multi-exon gene 51 49 55 5.6
Mean intron length (bp) 2069 1086 801 518
Est. mean integenic length (bp) 83000 36000 5400 2600
(c) Devika Subramanian, 2007 90
i Initial probabilities
I IT ITI IV
Intergenic (N) 0.892 0.867 0.54 0.418
Intron (I0+I1+I2+I0-1I1-I2-) 0.095 0.103 0.338 0.388
5' Untranslated region (F+, F-) 0.008 0.018 0.077 0.122
3' Untranslated region (T+, T-) 0.005 0.011 0.045 0.072
All other probabilities set to zero.
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i Transition probabilities

= Probabilities of state transitions not
present in model are zero.

= Deterministic transitions are
assighed probability 1.

= The others transition probabilities
are set according to maximum
likelihood values in training data.

(c) Devika Subramanian, 2007 92

Length distribution for

i infrons

= No introns < 65bp. After that
geometric (exponential) distribution.

= Substantial difference between
different C+G groups.

= So, infron length is modeled as
geometric distribution with different
parameters of different C+G groups.

(c) Devika Subramanian, 2007 93
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i Exon length distribution model

= Exons are very important to model.

Substantial differences in length
distribution between initial, internal and
terminal exons.

No substantial difference between
different C+G compositional groups.

Exon length means considered between 50
and 300 bps.

Account for phase (3*codons + phase)

(c) Devika Subramanian, 2007 94

i Other length distributions

= 5 UTR -> Geometric with mean 769bp
= 3' UTR -> Geometric with mean 457bp

(c) Devika Subramanian, 2007 95
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i Emission models

= Exons -- inhomogeneous 3-periodic 5™
order Markov model.

= Introns and intergenic regions -
homogeneous 5™ order Markov model

= 5’ and 3' UTRs - homogeneous 5™
order Markov model

(c) Devika Subramanian, 2007 96

Emission models for exons and
introns

5th order inhomogeneous
Models of Coding and Non-Coding DNA MC(r‘kOV mOdel

— In an inhomogeneous Markov model,
Codng 231123112 we have different distributions at
A different positions in the sequence.
311231123
A

—————— 5th order homogeneous Markov model :
P(Ot | Ot—lot—Zot—3ot—4ot—5)

(c) Devika Subramanian, 2007 97
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Genscan architecture (2)

= Weighted matrix (WMM) and weighted arrays
(WAM) for acceptor splice site, polyA site and
promoter region.
= WMM: p(i) is probability of nucleotide j at position i.
= WAM: p, (i) is probability of nucleotide k at position i

conditional on nucleotide j at position i-1.

= Decision tree (maximal dependence decomposition)

for donor sites.

= Different model parameters for regions with
different GC content.

(c) Devika Subramanian, 2007 98

i Splice Site Detection

(http://www-lmmb.ncifcrf.gov/~toms/sequencélogo. ml)

Donor: 7.9 bits
Acceptor: 9.4 bits
(Stephens & Schneider, 1996)

donor

intron

R ___T-f'rTTT1—rTTT T

acceptor )

3’/_ exon

(c) Devika Subramanian, 2007 99
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I Splice site detection

= =
Position

%\ -8 ...|-2]|-1] 01| 2 |..|17

Al 26|../]609] 01|54 ...]21

C|26|...|15|570 |1 2 |..|27

G| 25|...112|78199| 0|41 ... 27

T|23.../13|8! 1 |98 3 25| AN GEY.
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Weighted matrix

= Computed by measuring the frequency of every
element of every position of the site (weight)

TACGAT 112 |3|/4|5]|6
TATAAT Alole [o][3]4]o0
TATAAT- clolo[1]o]1 |o
GATACT Gl1lo [o/3 o]0
TATGAT T|5]0 [5lo]1]6
TATGTT

= Score for any putative site is the sum of the
matrix values (converted in probabilities) for that
sequence (log-likelihood score)

(c) Devika Subramanian, 2007 101
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Acceptor splice site

Consensus region from -20 to +3

Py  Z120-998474645-41312N 408 8T 6 54324 132

GOG00L0R0L0L02020202030303020303040408091.8210.30.0
Bits; L]

Todad

A weighted matrix model for scoring potential splice sites.
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Promotor model

= Promoters
= 30% of them lack apparent TATA signal
= So, split model:
TATA containing promoter

= Generated with probability 0.7
= 15 bp TATA-box WMM and 8 bp cap site WMM

= TATA-less
= Generated with probability 0.3
= Modeled as intergenic-null regions of 40bp

(c) Devika Subramanian, 2007 103
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Transcriptional and
Translational Signals

= PolyA signal
= 6 base pairs WMM (AATAAA)
= Translation Initiation signal

= 12 base pairs WMM (6 base pairs prior to start
codon)

= Translation termination signal

= 1of 3 stop codons according to observed
frequency

= Next 3 nucleotides using WMM

(c) Devika Subramanian, 2007 104

i Donor splice site

Piw = -l 1 Fi 3 4 5 4 7 ]

G aA6e"s

[ =] b
F o w o 5 8
42 44 11 21 146 0T 06 1 k1 00 B

Todal

(c) Devika Subramanian, 2007 105
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i Donor splice site model

= Consensus region -3 to +6 (3 on exon,
6 on intron)

= WMM or WAM not sufficient to
model because of dependencies on
non-adjacent nucleotides.

(c) Devika Subramanian, 2007 106

i MDD algorithm

Absence of nucleotide G at
position +5 implies a great
consensus matching at
position -1.

H=A/C/U
B=C/G6/VU
V=A/C/G

(c) Devika Subramanian, 2007 107
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i MDD algorithm

(A1l domar splice silea]

i | {1254
Pm A% C% G% U% . P A% % G% U%
-3 k] 5 15 13 / -3 s a 16 &
-2 585 15 15 /C—\ i -2 &S 4 7 5
1 5 4 W E] 35 5 1 2 157 [
o4 3 8 3 L s | ‘ (a7 | 5 = ERT 2
4 75 4 13 9 s S n 5 12
14 13 15 a8 “© - m B H
ER ) B o1 v 4 0’ 3 owm
2 % 15 1 GsG. | [~ GsHq 2 43 W 17 1
a2 w4 o= 3 L_ | | 2 | 3 s 0 4 [}
4 M 4 1 W i Y S o= T3 3
% 17 om o & “© 5 W W T
h
ER R ST 3 e ; 4 13 w B B
a3 » 51 s c-5C—.1A_E‘| ("C—;E.,B.g s o« T 1
4 &2 E 1 u \__ 1 @8 +4 =0 4 8 B8
€ I8 W™ M 3% —7— — % 4 U s
2 1 & n 5 ¥ oA E T 2
s w + s om |'GSGl-1_‘"*-1Lﬂ 'SC';',I;‘-Z\??I a3 s s 3
- 51 E 5 11 - anm \_ 310 J o# & 5 E T
All sites: Position

Base 3 2 -1+l 42 43+ 8 46

A% EER 0 0 4 T £ 15

C% a7 13 4 ¢ o 3 T 5 13

G% 18 14 8 14 0 45 12 B 20

U% 1z 13 7 0 w3 8 5 46

Ul snRNA: % G U C C A U U C A 5
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i Using Genscan for gene finding

= Model's goal is to generate "Optimal Parse”

= Parse (X) consists of
= Ordered set of states = {s,;,....S,}
where s; € {S;/ j=1to 27}
= Associated lengths (durations)
(d) = {d;.d,,...d}
= It generates DNA sequence O of length
L= Zic110nds

(c) Devika Subramanian, 2007 109
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Running the model

= An initial state s; is chosen according to an
initial distribution 1 on the states, ie. m; =
P(s1=5))

= A len_gfrh distribution d; is generated
conditional on sy ;, fy (dy)

= A sequence segment s; of length d, is
8ener'a’red conditional of s; and d, i.e.
(sils1.dy)
= Subsequent state s, is generated,
conditional on s;. First order Markov. q;; =
P(Sk+1: SJ |Sk:5ii

(c) Devika Subramanian, 2007 110

i Using model

= Optimal parse can be computed by
Viterbi algorithm for generalized
HMMs (see Rabiner's extension in
section 4D, pages 269-270).

(c) Devika Subramanian, 2007 111
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:L Genscan output

TAPT XU I WU »3 Wy LMP7
L L 1 . 1 L 1 L 1 . 1 L 1 L 1 . 1 L 1 L 1 kb
4] 4 8 12 16 20 24 28 32 36 40
LMP24q II1L 1T K
) ] I NI TAP2 DOB 1 1L
L L 1 1 | Il | i | i 1 Il 1 ] kb
40 44 48 52 56 60 64
21 Initial exan [J Internal exon

[ Terminal exon 2> Single-exon gene
[0 GENSCAN predicted exon
B GenBank annotated exon

rrrrr

inian in Structural Biolagy

i Genscan

= The Genscan HMM model
= Training Genscan
= Validating Genscan

(c) Devika Subramanian, 2007
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i Evaluating gene finders

= Calculating accuracy of programs'’
predictions

= Several evaluation studies:

= Burset and Guigé, 1996 (vertebrate
sequences)

= Pavy et al,, 1999 (Arabidopsis thaliana)
= Rogic et a/, 2001 (mammalian sequences)

(c) Devika Subramanian, 2007 114

Accuracy Metrics

actual class

A
' - ™
positive negative
i fal
- L falze positrves
positive e pasttives Alie posl
(TP (FF)
predicted
- false nazatives frue negatives
HEEANER | (P (TIN)
sensitivity = P
© all pos TP+FN
i TP TP
specificity =

predicted pos " TP +EP
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easures of Prediction Accuracy

Nucleotide level accuracy

REALITY |

PREDICTION| |
. . TP
Sensitivity S5m0

Specificity sp - 7P H“
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Measures of Prediction Accuracy

Exon level accuracy

WRONG CORRECT MISSING
EXON EXON EXON

REALITY

PREDICTION

o _TE o TE
ESn =k ESp =pp

v_i( i
AC=S\p N TP+7P TN+ EP TIN+EN !

w . TP . IN . }"N)
(TP * IN) - (FN * FP)

cc y
((TP + EN) * (IN + FP) * (TP + FP) *(TN + FN)) 2
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i Evaluation Results

Tucleotide accuracy

Exon accuracy

Programs #of
AR o s Ac cC | Ese | ESp |(ESutEspy2 | ME WE  PCa PCp | OL
FGENES 195(5) | 086 088 | 034019 | 083 | 067 | 067 | 067032 | 002 009 020 007 002
GomeMaklew | 105(0) | 087 | 039 | 034018 | 083 | 053 | 054 | 054036 | 043 011 | 020 027 | 009
Garie 185¢15) | 091 | 090 | nsw£0i6 | D88 | 071 | 070 | p7ii0an | 009 041 | 005 045 002
Genscan 195¢3) | 095 | 050 | 081002 | 091 | 070 | 0m | 0f0£032 | 008 009 | 021 019 | 002
HMMgens 195¢5 | 093 | 083 | 081043 | 081 | 076 | 077 | 0762030 | 012 007 | 014 014 002
Morgan wrm | 025 07 | 07003t | 069 | 046 041 | p4s+026 | 020 028 028 025 007
MEZEF 1o | 01 | 073 | oest0zn | 0&6 | 058 | 059 | oseoz | 032 023 008 016 | 001

T
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i Genscan and Chromosome 22
= I. Dunham, Nature 402:489-95, 1999

= Chromosome 22

= Annotated genes: 94% predicted
partially
= Annotated exons: 84% predicted
partially

= Predicted exons: 30% more than

annotated exons. How many of them are
real exons?

(c) Devika Subramanian, 2007
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Integrated approaches for

igene finding

= Programs that integrate results of
similarity searches with ab /nitio
techniques (GenomeScan, FGENESH+,
Procrustes)

= Programs that use synteny between
organisms (ROSETTA, SLAM)

= Integration of programs predicting
different elements of a gene (EuGéne)

= Combining predictions from several gene
finding programs (combination of experts)

(c) Devika Subramanian, 2007 120

AND and OR Methods

union

intersection

(c) Devika Subramanian, 2007 121
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Combining Genscan and

i HMMgene

= High prediction accuracy as well as reliability of
their exon probability make them good candidates.

111 HMMgene

= Genscan predicted 77% of exons correctly,

HMMgene 75%, both 87%

(c) Devika Subramanian, 2007
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EUI Method

i (exon union - intersection)

1. Union of exons with p>0.75
2. Intersection of exons with p<0.75
3. Rule for initial exon

GENSCAN

HMMGENE

MIXT+

—|—|inlernu|,p>0.75:%| p>0.75 ——p<0.75—— p<0.75
initial  —— p>075 | p<0.75s [ —
rule — union intersection

(c) Devika Subramanian, 2007
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i@ene intersection (6I) method

1. Intersection of genes

2. Apply EUI method to exons
completely belonging to GI genes

GENSCAN ="iﬁlemul,p>ﬂ.fﬁ% p>0.75 '=p<u'."?5j,‘ <075 ———

HWMGENE —— inifial —— p>075 ——]  p<07s. —
i : —1 |

EUI '=I| e —— union Ivilmrersedlm —

I e N S e —
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EUTI with reading frame
i consistency

1. Assigh probabilities to GI genes.
Determine position of acceptor and
donor site in a reading frame.

2. 6I gene with higher probability
imposes the reading frame. Choose
only EUI exons contained in GI genes
that are in a chosen reading frame.

(c) Devika Subramanian, 2007 125
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Results - Burset/Guigé
i dataset

o Nucleetide accunecy Exan accurcy
METHODS i
dici
prediction| s | ac | Bs | B |EREPV] s | g
0.09 005
Genscan 8 094 093 092 0.78 0.81 0.20 (203) 1%
0.14 004
HMMgene 38 0a3 094 092 0.81 0.83 0.22 (308) 139)
012 0.0%
EUI 20 094 0.96 0.93 0.83 0.83 0.85 (250} (95
0.1% 0.02
G 43 091 0.97 0.93 0.82 0.90 .86 (326) (67
0.13 0.03
EUIL_frame 7 093 0.96 0.93 0.83 0.88 0.85 (236 (7)
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Summary: Eukaryotic gene
finding

= Overall accuracy usually below 50%
= Human gene finding is hardest
= Very long introns, and lots of them

= Leading methods: HMMs and variants
= New ideas needed

= New opportunity: use sequence of
related species

(c) Devika Subramanian, 2007 127
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