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How to design an HMM for a 
new problem

Architecture/topology design:
What are the states, observation symbols, and 
the topology of the state transition graph?

Learning/Training:
Fully annotated or partially annotated training 
datasets
Parameter estimation by maximum likelihood or by EM

Validation/Testing:
Fully annotated testing datasets
Performance evaluation (accuracy, specificity and 
sensitivity)
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HMM model structure
Duration modeling

s LF
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t:0.5

What is the probability of staying with
the fair coin for T time steps?
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Inherent limitation of HMMs
The duration in state F follows an 
exponentially decaying distribution called a 
geometric distribution.

The geometric distribution gives too much 
probability to short sequences of Fs and Ls 
and too little to medium and long sequences 
of Fs and Ls.
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Duration modeling
To obtain non-geometric length 
distributions, we use an array of n F 
states, as follows:

Generated length distribution is a 
negative binomial.
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Why does this matter?

IntronExon

Length of stay in “Exon” state determines length 
of predicted exons. Very short exons are rare.

Similarly for introns. Introns shorter than 30 bp
do not exist.

L

Geometric dist

Exon length dist
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Length distributions of exons
and introns
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Generalized HMMs (semi-Markov 
HMMs)
Each state has a specified length distribution.

Pick a state to start at t=1.
Repeat

Pick the length of stay (d) in current state from 
distribution P.
Emit d symbols in current state.
Pick a new state (according to a matrix) and transition to 
it at time t+d

Exon Intron

PE PI No self-transitions to
generate extra symbols
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Example

Multiple symbols emitted in each state. One to one mapping between
symbols and hidden states is lost in the generalized HMM.
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Viterbi algorithm for gHMMs
Just like Viterbi for HMMs, but we use the entire stay 
in state instead of a state at a given time.
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Genscan
The Genscan HMM model
Training Genscan
Validating Genscan
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Gene structure assumed by 
Genscan

acceptor sitedonor site
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A simple model
IntergenicPromotor

5’ UTR

Initial
Exon Intron

Internal Exon

Terminal
Exon

3’UTR

PolyA

Single exon gene
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Exon phases
Need to keep track of codon position in exon.

I0 I1 I2

E2E1E0

Initial
Exon

Terminal
Exon

0: actgacgttcgt
1: actgacgttcgt
2: actgacgttcgt
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Genscan’s architecture (1)
HMM states for exons and introns in 
three different phases, single exon, 
5’ and 3’ UTRs, promoter region, 
polyA site and intergenic region.

Explicit length modeling of introns
and exons.
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Genscan HMM

N
(intergenic

region)

R
everse (-) 

strand
Forw

ard (+) 
strand

E0 +

E1 +

E2 +

I0 +

I1 +

I2 +

Einit+

Eterm+

F +
(5’UTR)

T +
(3’UTR)

P +
(prom)

A +
(polyA 
signal)

Esngl +
(single-exon 

gene)

A -
(polyA 
signal)

P -
(prom)

F -
(5’UTR)

T -
(3’UTR)

Einit-

Eterm-

I0 -

I1 -

I2 -

E0 -

E1 -

E2 -

Esngl -
(single-exon 

gene)

(“Prediction of complete gene structures in human genomic DNAPrediction of complete gene structures in human genomic DNA”(1997) Burge and Karlin, JMB 268, p. 86)
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Genscan model components
Vector of initial probabilities: π
State Transition probability Matrix: a
Set of length distributions: fq
conditional on state q.
Emission probabilities: P(s|q,d) 
conditional on state and length. 
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Isochore groups

260054003600083000Est. mean integenic length (bp)

51880110862069Mean intron length (bp)

5.65.54.95.1Introns per multi-exon gene

11651118908902Codelen: multi-exon genes (bp)

1137130412511130Codelen: single-exon genes (bp)

0.160.230.190.16Est. proportion single-exon genes

1019911565Number of genes

>5751-5743-51<43C + G% range

IVIIIIIIGroup
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Initial probabilities 

0.0720.0450.0110.0053' Untranslated region (T+, T-)

0.1220.0770.0180.0085' Untranslated region (F+, F-)

0.3880.3380.1030.095Intron (I0+,I1+,I2+,I0-,I1-,I2-)

0.4180.540.8670.892Intergenic (N)

All other probabilities set to zero.

I        II         III       IV
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Transition probabilities
Probabilities of state transitions not 
present in model are zero.
Deterministic transitions are 
assigned probability 1.
The others transition probabilities 
are set according to maximum 
likelihood values in training data.
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Length distribution for 
introns

No introns < 65bp. After that 
geometric (exponential) distribution.
Substantial difference between 
different C+G groups.
So, intron length is modeled as 
geometric distribution with different 
parameters of different C+G groups.
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Exon length distribution model
Exons are very important to model.
Substantial differences in length 
distribution between initial, internal and 
terminal exons.
No substantial difference between 
different C+G compositional groups.
Exon length means considered between 50 
and 300 bps.
Account for phase (3*codons + phase)
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Other length distributions
5’ UTR -> Geometric with mean 769bp
3’ UTR -> Geometric with mean 457bp
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Emission models
Exons -- inhomogeneous 3-periodic 5th

order Markov model.
Introns and intergenic regions -
homogeneous 5th order Markov model
5’ and 3’ UTRs - homogeneous 5th

order Markov model
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Emission models for exons and 
introns

5th order homogeneous Markov model : 

)|( 54321 −−−−− tttttt ooooooP

5th order inhomogeneous
Markov model

In an inhomogeneous Markov model, 
we have different distributions at
different positions in the sequence.
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Genscan architecture (2)
Weighted matrix (WMM) and weighted arrays 
(WAM) for acceptor splice site, polyA site and 
promoter region.

WMM: pj(i) is probability of nucleotide j at position i.
WAM: pj,k(i) is probability of nucleotide k at position i 
conditional on nucleotide j at position i-1.

Decision tree (maximal dependence decomposition) 
for donor sites.
Different model parameters for regions with 
different GC content. 
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Splice Site Detection
(http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html)

Donor: 7.9 bits
Acceptor: 9.4 bits
(Stephens & Schneider, 1996)
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5’ 3’
Donor site

Position

% -8 … -2 -1 0 1 2 … 17
A 26 … 60 9 0 1 54 … 21
C 26 … 15 5 0 1 2 … 27
G 25 … 12 78 99 0 41 … 27
T 23 … 13 8 1 98 3 … 25

Splice site detection
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Weighted matrix
Computed by measuring the frequency of every 
element of every position of the site (weight)

Score for any putative site is the sum of the 
matrix values (converted in probabilities) for that 
sequence (log-likelihood score)

TACGAT

TATAAT

TATAAT

GATACT

TATGAT

TATGTT
610505T
003001G
010100C
043060A

654321
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Acceptor splice site

Consensus region from -20 to +3

A weighted matrix model for scoring potential splice sites.
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Promotor model
Promoters

30% of them lack apparent TATA signal
So, split model:
TATA containing promoter

Generated with probability 0.7
15 bp TATA-box WMM and 8 bp cap site WMM

TATA-less
Generated with probability 0.3
Modeled as intergenic-null regions of 40bp
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Transcriptional and 
Translational Signals

PolyA signal
6 base pairs WMM (AATAAA)

Translation Initiation signal
12 base pairs WMM (6 base pairs prior to start 
codon)

Translation termination signal
1 of 3 stop codons according to observed 
frequency
Next 3 nucleotides using WMM
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Donor splice site



17

(c) Devika Subramanian, 2007 106

Donor splice site model
Consensus region -3 to +6 (3 on exon, 
6 on intron)
WMM or WAM not sufficient to 
model because of dependencies on 
non-adjacent nucleotides.
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MDD algorithm
Absence of nucleotide G at 

position +5 implies  a great 
consensus matching at 
position -1.

H = A/C/U

B=C/G/U

V=A/C/G
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MDD algorithm
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Using Genscan for gene finding
Model’s goal is to generate “Optimal Parse”
Parse (X) consists of

Ordered set of states = {s1,s2,…,sn}
where si ε {Sj / j=1 to 27}
Associated lengths (durations)
(d) = {d1,d2,…,dn}
It generates DNA sequence O of length
L = Σi=1 to ndi.
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Running the model
An initial state s1 is chosen according to an 
initial distribution π on the states, i.e. πi = 
P(s1=Si)
A length distribution d1 is generated 
conditional on s1,i.e. fs1 (d1)
A sequence segment s1 of length d1 is 
generated conditional of s1 and d1 i.e. 
P(si|s1,d1)
Subsequent state s2 is generated, 
conditional on s1. First order Markov. aij = 
P(sk+1= Sj |sk=Si}
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Using model 
Optimal parse can be computed by 
Viterbi algorithm for generalized 
HMMs (see Rabiner’s extension in 
section 4D, pages 269-270).
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Genscan output
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Genscan
The Genscan HMM model
Training Genscan
Validating Genscan
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Evaluating gene finders
Calculating accuracy of programs’
predictions

Several evaluation studies:
Burset and Guigó, 1996 (vertebrate 
sequences)
Pavy et al., 1999 (Arabidopsis thaliana)
Rogic et al., 2001 (mammalian sequences)
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Measures of Prediction Accuracy

TN FPFN TN TNTPFNTP FN

REALITY

PREDICTION

Sensitivity

Specificity

Nucleotide level accuracy
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Measures of Prediction Accuracy
Exon level accuracy

REALITY

PREDICTION

WRONG
EXON

CORRECT
EXON

MISSING
EXON
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Evaluation Results
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Genscan and Chromosome 22
I. Dunham, Nature 402:489-95, 1999
Chromosome 22 

Annotated genes: 94% predicted 
partially
Annotated exons: 84% predicted 
partially
Predicted exons: 30% more than 
annotated exons. How many of them are 
real exons?
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Integrated approaches for 
gene finding

Programs that integrate results of 
similarity searches with ab initio
techniques (GenomeScan, FGENESH+,  
Procrustes)
Programs that use synteny between 
organisms (ROSETTA, SLAM)
Integration of programs predicting 
different elements of a gene (EuGène)
Combining predictions from several gene 
finding programs (combination of experts)
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AND and OR Methods
exon 1

exon 2

union

intersection
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Combining Genscan and 
HMMgene

High prediction accuracy as well as reliability of 
their exon probability make them good candidates.

Genscan predicted 77% of exons correctly, 
HMMgene 75%, both 87%

111 624 91Genscan HMMgene
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EUI Method
(exon union – intersection)

1. Union of exons with p≥ 0.75
2. Intersection of exons with p <0.75
3. Rule for initial exon
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Gene intersection (GI) method
1. Intersection of genes
2. Apply EUI method to exons 

completely belonging to GI genes
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EUI with reading frame 
consistency
1. Assign probabilities to GI genes. 

Determine position of acceptor and 
donor site in a reading frame.

2. GI gene with higher probability 
imposes the reading frame. Choose 
only EUI exons contained in GI genes 
that are in a chosen reading frame.
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Results – Burset/Guigó
dataset
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Summary: Eukaryotic gene 
finding

Overall accuracy usually below 50%
Human gene finding is hardest
Very long introns, and lots of them

Leading methods: HMMs and variants
New ideas needed
New opportunity: use sequence of 
related species


