

How to design an HMM for a new problem

- Architecture/topology design:
 - What are the states, observation symbols, and the topology of the state transition graph?
- Learning/Training:
 - Fully annotated or partially annotated training datasets
 - Parameter estimation by maximum likelihood or by EM
- Validation/Testing:
 - Fully annotated testing datasets
 - Performance evaluation (accuracy, specificity and sensitivity)

(c) Devika Subramanian, 2007

HMM model structure

Duration modeling

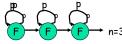
What is the probability of staying with the fair coin for T time steps?

(c) Devika Subramanian, 2007

Inherent limitation of HMMs

 The duration in state F follows an exponentially decaying distribution called a geometric distribution.

$$P(X = F^T) = (0.95)^{T-1}(0.05)$$


 The geometric distribution gives too much probability to short sequences of Fs and Ls and too little to medium and long sequences of Fs and Ls.

(c) Devika Subramanian, 2007

Duration modeling

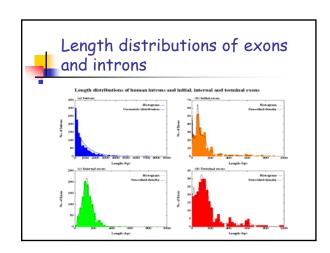
 To obtain non-geometric length distributions, we use an array of n F states, as follows:

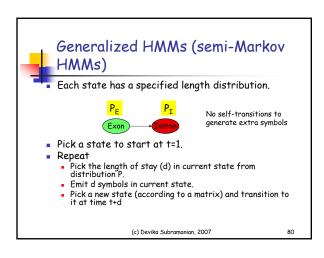
$$P(|X|=L) = {\binom{L-1}{n-1}} p^{L-n} (1-p)^n$$

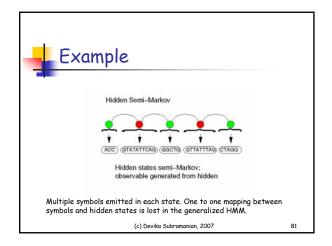
 Generated length distribution is a negative binomial.

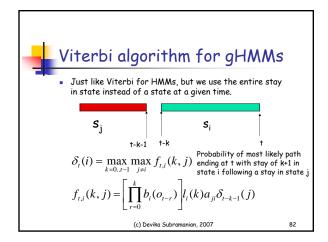
(c) Devika Subramanian, 2007

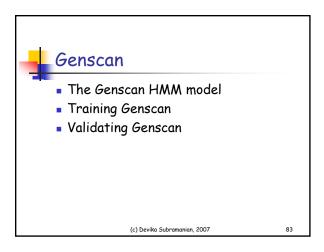
7

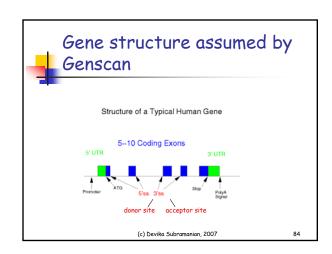

Why does this matter?

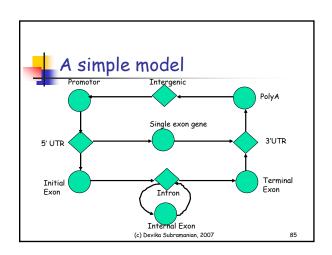


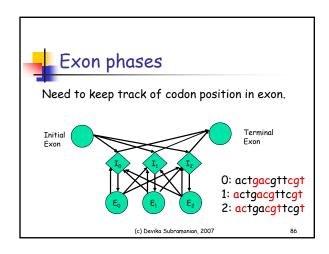

- Length of stay in "Exon" state determines length of predicted exons. Very short exons are rare.
- Similarly for introns. Introns shorter than 30 bp do not exist.

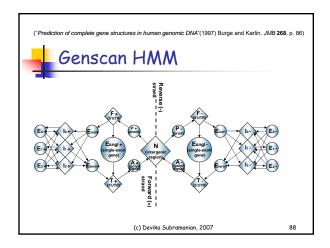

(c) Devika Subramanian, 2007


78





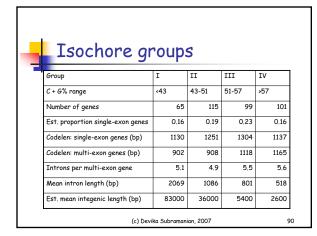


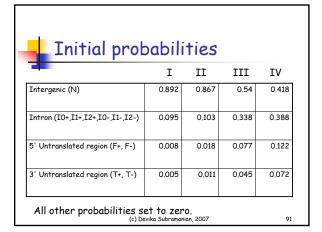


Genscan's architecture (1)

- HMM states for exons and introns in three different phases, single exon, 5' and 3' UTRs, promoter region, polyA site and intergenic region.
- Explicit length modeling of introns and exons.

(c) Devika Subramanian, 2007





Genscan model components

- Vector of initial probabilities: π
- State Transition probability Matrix: a
- Set of length distributions: f_q conditional on state q.
- Emission probabilities: P(s|q,d) conditional on state and length.

(c) Devika Subramanian, 2007

Transition probabilities

- Probabilities of state transitions not present in model are zero.
- Deterministic transitions are assigned probability 1.
- The others transition probabilities are set according to maximum likelihood values in training data.

(c) Devika Subramanian, 2007

Length distribution for introns

- No introns < 65bp. After that geometric (exponential) distribution.
- Substantial difference between different C+G groups.
- So, intron length is modeled as geometric distribution with different parameters of different C+G groups.

(c) Devika Subramanian, 2007

. . .

Exon length distribution model

- Exons are very important to model.
- Substantial differences in length distribution between initial, internal and terminal exons.
- No substantial difference between different C+G compositional groups.
- Exon length means considered between 50 and 300 bps.
- Account for phase (3*codons + phase)

(c) Devika Subramanian, 2007

Other length distributions

- 5' UTR -> Geometric with mean 769bp
- 3' UTR -> Geometric with mean 457bp

(c) Devika Subramanian, 2007

95

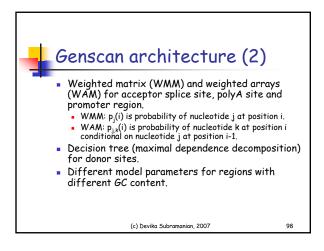
Emission models

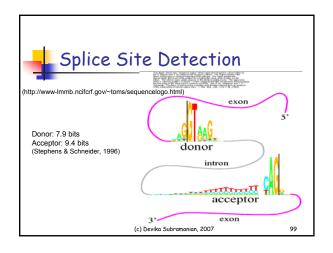
- Exons -- inhomogeneous 3-periodic 5th order Markov model.
- Introns and intergenic regions homogeneous 5th order Markov model
- 5' and 3' UTRs homogeneous 5th order Markov model

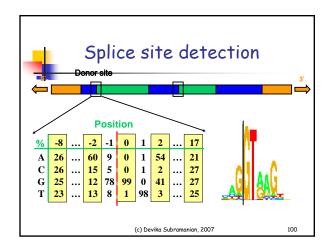
(c) Devika Subramanian, 2007

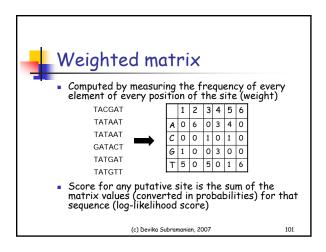
Emission models for exons and introns

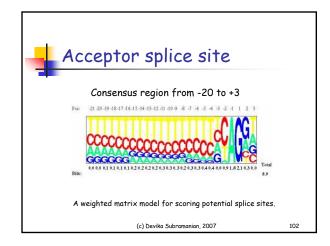
5th order inhomogeneous Markov model

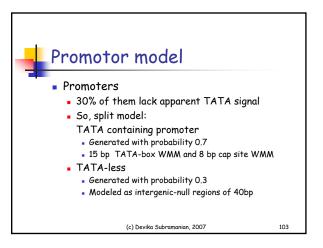

In an *inhomogeneous* Markov model, we have different distributions at different positions in the sequence.

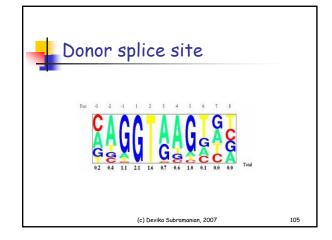

=====


5th order homogeneous Markov model :


 $P(o_t | o_{t-1}o_{t-2}o_{t-3}o_{t-4}o_{t-5})$


(c) Devika Subramanian, 2007

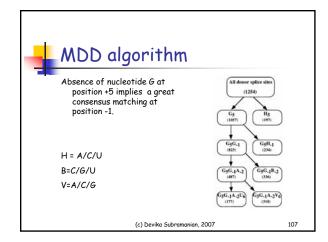


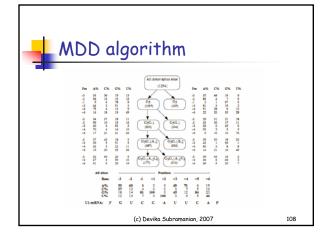


Transcriptional and Translational Signals

- PolyA signal
 - 6 base pairs WMM (AATAAA)
- Translation Initiation signal
 - 12 base pairs WMM (6 base pairs prior to start codon)
- Translation termination signal
 - 1 of 3 stop codons according to observed frequency
 - Next 3 nucleotides using WMM

(c) Devika Subramanian, 2007




Donor splice site model

- Consensus region -3 to +6 (3 on exon, 6 on intron)
- WMM or WAM not sufficient to model because of dependencies on non-adjacent nucleotides.

(c) Devika Subramanian, 2007

106

Using Genscan for gene finding

- Model's goal is to generate "Optimal Parse"
- Parse (X) consists of
 - Ordered set of states = $\{s_1, s_2, ..., s_n\}$ where $s_i \in \{S_j / j=1 \text{ to 27}\}$
 - Associated lengths (durations)
 (d) = {d₁,d₂,...,d_n}
 - It generates DNA sequence O of length $L = \sum_{i=1 \text{ to } n} d_i$.

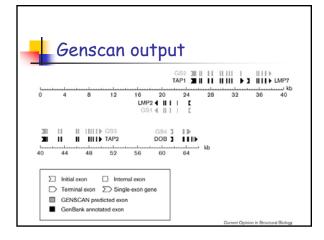
(c) Devika Subramanian, 2007

Running the model

- An initial state s_1 is chosen according to an initial distribution π on the states, i.e. $\pi_i = P(s_i = S_i)$
- A length distribution d₁ is generated conditional on s_{1,i.e.} f_{s1} (d₁)
- A sequence segment s_1 of length d_1 is generated conditional of s_1 and d_1 i.e. $P(s_i|s_1,d_1)$
- Subsequent state s_2 is generated, conditional on s_1 . First order Markov. $a_{ij} = P(s_{k+1} = S_j \mid s_k = S_i)$

(c) Devika Subramanian, 2007

110



Using model

 Optimal parse can be computed by Viterbi algorithm for generalized HMMs (see Rabiner's extension in section 4D, pages 269-270).

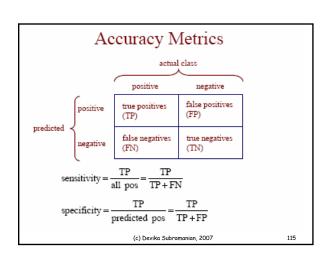
(c) Devika Subramanian, 2007

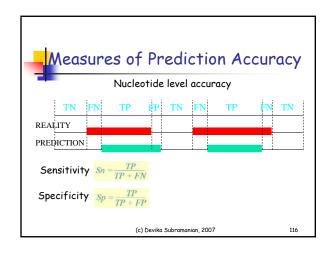
111

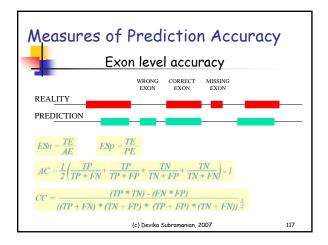
Genscan

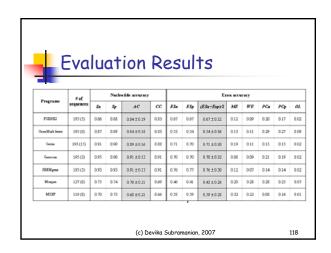
- The Genscan HMM model
- Training Genscan
- Validating Genscan

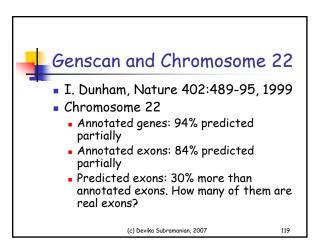
(c) Devika Subramanian, 2007

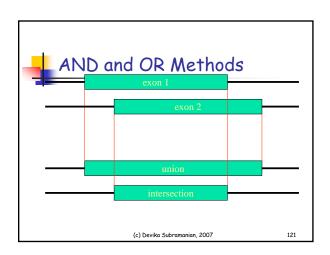

113

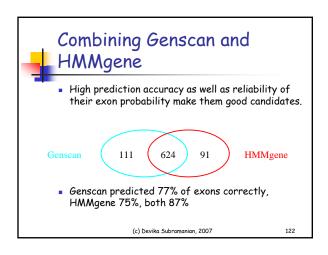


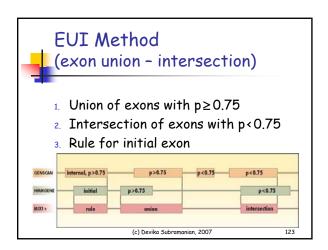

Evaluating gene finders

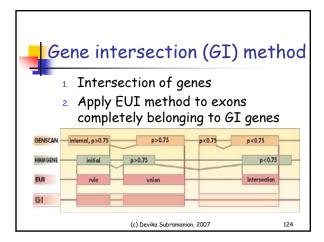

- Calculating accuracy of programs' predictions
- Several evaluation studies:
 - Burset and Guigó, 1996 (vertebrate sequences)
 - Pavy et al., 1999 (Arabidopsis thaliana)
 - Rogic et al., 2001 (mammalian sequences)

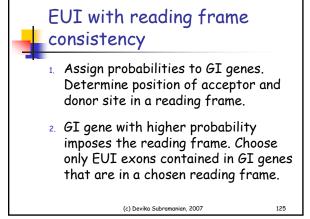

(c) Devika Subramanian, 2007

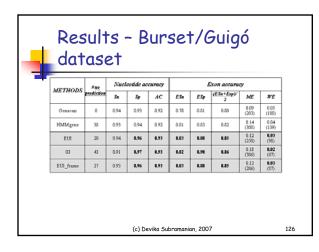









- Programs that integrate results of similarity searches with ab initio techniques (GenomeScan, FGENESH+, Procrustes)
- Programs that use synteny between organisms (ROSETTA, SLAM)
- Integration of programs predicting different elements of a gene (EuGène)
- Combining predictions from several gene finding programs (combination of experts)
 (c) Devika Subramanian, 2007



Summary: Eukaryotic gene finding

- Overall accuracy usually below 50%
 - Human gene finding is hardest
 - Very long introns, and lots of them
- Leading methods: HMMs and variants
- New ideas needed
- New opportunity: use sequence of related species

(c) Devika Subramanian, 2007