
Supervised learning and analysis of microarray data

Devika Subramanian Comp 470

Microarray technology

- Quick recap
 - Proteins: determine state of cell
 - Gene: codes for a protein
 - mRNA: helps assemble a protein
 - mRNA levels ~ gene exp. level ~ protein levels
- Microarrays measure the expression levels of thousands of genes at a time.
- Typical experiment: Measure expression of genes under different conditions and ask what is different at a molecular level and why.

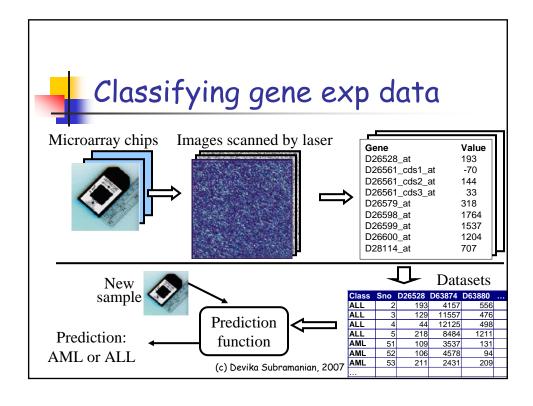
Microarray applications

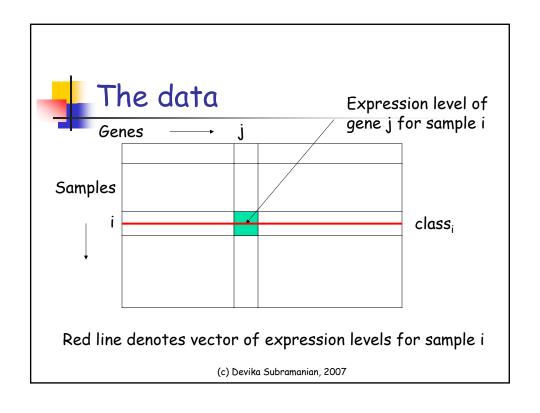
- Biological discovery
 - new and better molecular diagnostics
 - new molecular targets for therapy
 - finding and refining biological pathways
- Recent examples
 - molecular diagnosis of leukemia, breast cancer.
 - appropriate treatment for genetic signature
 - potential new drug targets

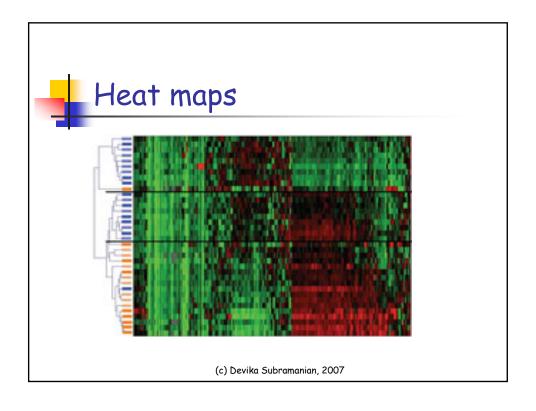
Two computational tasks

- Classifying gene expressions: this week
 - What can be learnt about a cell from the set of all mRNA expressed in a cell? Classifying diseases: does a patient have benign prostate cancer or metastatic prostate cancer? ALL or AML?
- Inferring regulatory networks: next week
 - What is the "circuitry" of the cell? What are the genetic pathways of cancer?

(c) Devika Subramanian, 2007


Common Approaches


- Comparing two measurements at a time
 - Person 1, gene *G*: 1000
 - Person 2, gene G: 3200
 - Greater than 3-fold change: flag this gene
- Comparing one measurement with a population of measurements... is it likely that the new measurement was drawn from same distribution?

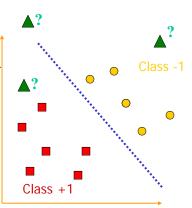


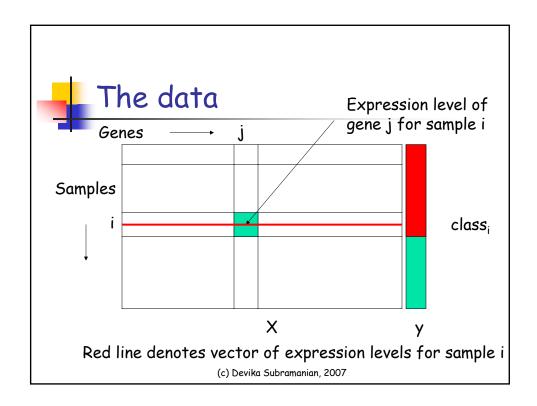
Classification

- Use our knowledge of class values, e.g., myeloma vs. normal etc., to gain added insight.
- Find genes that are best predictors of class.
 - Can provide useful tests, e.g. for choosing treatment.
 - If predictor is comprehensible, may provide novel insight, e.g., point to a new therapeutic target.

Challenges

- Microarray data inherit large experimental and biological variances
 - · experimental bias + tissue heterogeneity
 - cross-hybridisation
 - · 'bad design': confounding effects
- Microarray data are sparse
 - high-dimensionality of genes
 - · low number of samples/arrays
 - Curse of dimensionality
- Microarray data are highly redundant
 - Many genes are co-expressed, thus their expression is strongly correlated.

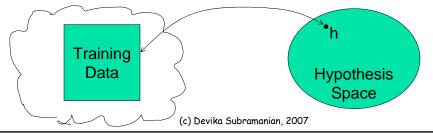

(c) Devika Subramanian, 2007



Classification

Given examples drawn from two classes, learn to classify new examples into the correct class.

> Each point represents a vector of gene expression levels


The classification problem

- Given training data $\{(x_1,y_1),...,(x_m,y_m)\}, x_i \text{ in } \mathbb{R}^n, y_i \text{ in } \{+1,-1\}.$
- Estimate function h:Rⁿ → {+1,-1} such that h will correctly classify new unseen examples from the same underlying probability distribution as the training data.

Classification as optimization

- Set S of training data points
- Class H of hypotheses/models
- Optimization problem: Find the hypothesis/model h in H that best fits all data.

Objective function

 Minimizing training set error does not imply minimizing true error!

$$R_{train}[h] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [h(x_i) - y_i]^2$$
 Empirical risk

$$R[h] = \int \frac{1}{2} [h(x_i) - y_i]^2 dP(x, y)$$
 True error

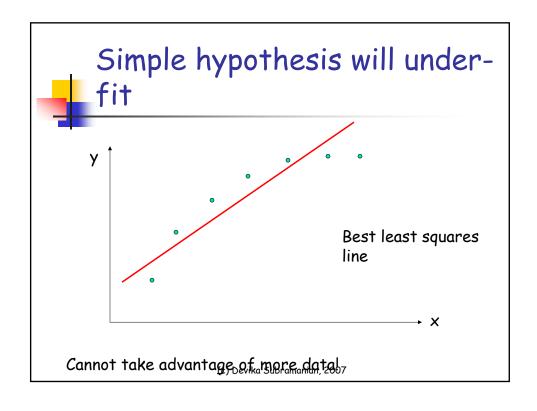
Statistical machine learning theory

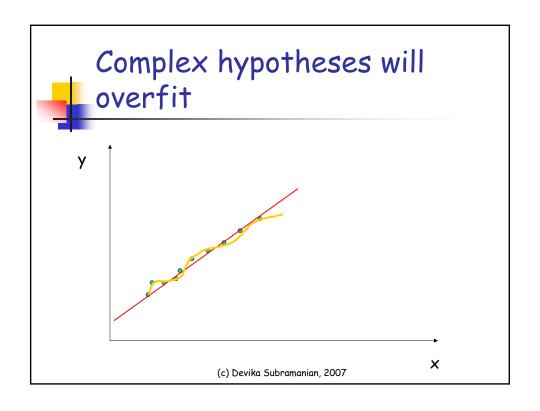
- Non-asymptotic theory, based on finite samples which bounds true error in terms of training set error.
- Gives tradeoff between complexity of model and amount of data needed to learn it.

(c) Devika Subramanian, 2007

A bound on true error

 VC dimension theory allows us to relate train and test error for particular function classes. The key intuition is that the error of a function is not an absolute, but relative to the class of functions it is drawn from.


$$R[h] \le R_{train}[h] + \sqrt{\frac{VC(h)(\log 2m/VC(h) + 1) - \log(\delta/4)}{m}}$$


VC(h) is the VC dimension of the class from which h is drawn and delta is the probability bound, m is the size of the training set (Vapnik, 1995).

Tradeoffs

- With only a small amount of data, we can only discriminate between a small number of different hypotheses.
- As we get more data, we have more evidence, so we can consider more alternative hypotheses.
- Complex hypotheses give better fit to the data.

Support vector machines

- A new generation of learning algorithms based on
 - Non-linear optimization
 - Statistics
 - Functional analysis
- Come with theoretical guarantees on performance, because the learning problem can be reduced to convex optimization.

(c) Devika Subramanian, 2007

Applications

- SVMs have been used in a wide variety of tasks and are reputed to be the best for
 - Text categorization
 - Handwriting recognition
 - Classification of gene expression data

History

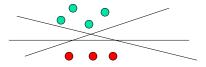
- Introduced in 1992 by Boser, Guyon and Vapnik (COLT 1992).
- Very rapid growth since then. 2
 excellent textbooks and lots of new
 work both in theory and applications.
- www.kernel-machines.org is a great resource for learning about SVMs.

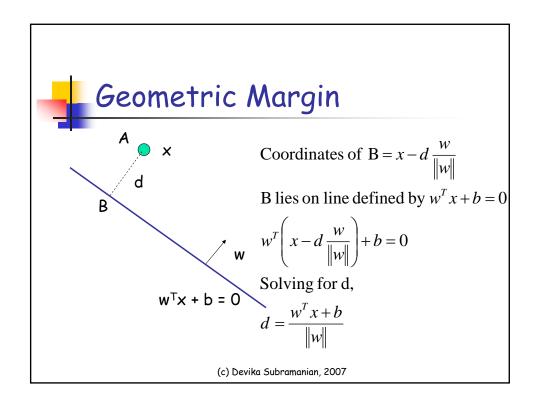
(c) Devika Subramanian, 2007

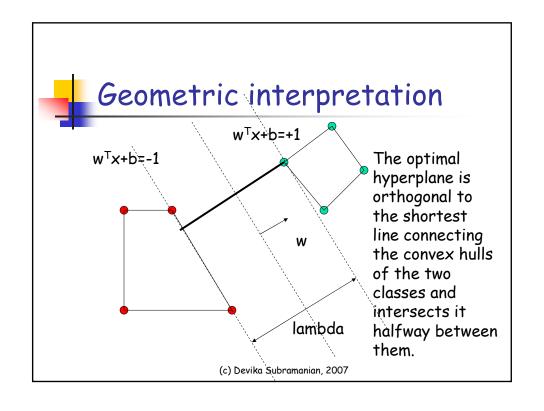
The Problem

- Given training data $\{(x_1,y_1),...,(x_m,y_m)\}, x_i \text{ in } \mathbb{R}^n, y_i \text{ in } \{+1,-1\}.$
- Estimate function h:Rⁿ → {+1,-1} such that h will correctly classify new unseen examples from the same underlying probability distribution as the training data.

Linear support vector machines


- Consider the class of oriented hyperplanes in R^{n.}
 - h(x) = sign(w.x + b)
- If data is linearly separable, then there is a function from this class that separates the +1 points from the -1 points.


(c) Devika Subramanian, 2007



Linear separating hyperplanes

 Unfortunately, there are an infinite number of linear hyperplanes that separate the data!

Margin maximization

 Let x⁺ and x⁻ be the two points on the convex hulls of the positive and negative data which are closest to the maximal margin hyperplane.

1.
$$w^T x^+ + b = +1$$

2.
$$w^T x^- + b = -1$$

3.
$$x^+ = x^- + \lambda \frac{w}{\|w\|}$$

Lambda is the margin width, It is inversely proportional to w.w. So to maximize margin, we minimize w.

$$w^{T}(x^{+}-x^{-})=2$$
, from 1. and 2.

$$\lambda = \frac{2}{\parallel \mathbf{w} \parallel}$$
, from 3 and above.

(c) Devika Subramanian, 2007

Optimal separating hyperplane

- Among all separating hyperplanes, there is one with the maximum margin.
- A hyperplane separating data (x₁,y₁),...,(x_m,y_m) satisfies

•
$$(w.x_i) + b \ge 1 \text{ if } y_i = +1$$

•
$$(w.x_i) + b <= -1 \text{ if } y_i = -1$$

Or in short...

•
$$y_i[(w.x_i)+b] >= 1$$
, for $i = 1..m$

 The optimal hyperplane satisfies the above conditions and has the minimal norm ||w||²=w.w (c) Devika Subramanian, 2007

Learning the maximum margin classifier

Find w and b that minimize

$$\tau(\mathbf{w}) = \frac{1}{2} \left\| \mathbf{w} \right\|^2$$

subject to

$$y_i(w^T x_i + b) \ge 1$$
, for $i = 1..m$

Quadratic programming!

(c) Devika Subramanian, 2007

Solving the quadratic program

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{m} \alpha_i (y_i(w^T x_i + b) - 1)$$

L must be minimized with respect to w and b and maximized with respect to the Lagrange multipliers alpha;

The first derivative with respect to w and b must vanish at the saddle point.

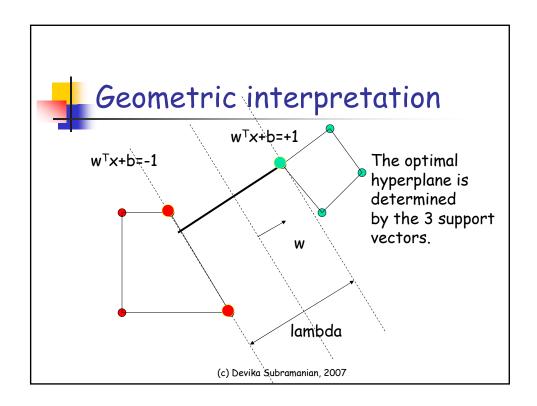
Solving the quadratic program

$$\frac{\partial L(w,b,\alpha)}{\partial w} = 0 \text{ which yields } \sum_{i=1}^{m} \alpha_i y_i x_i = w$$

This means w has an expansion in terms of a subset of the training data, namely those (x_i,y_i) for which alpha; > 0. These data points are called support vectors. None of the other data points matter. The maximal margin hyperplane is completely determined by the support vectors.

(c) Devika Subramanian, 2007

Solving the quadratic program


$$\frac{\partial L(w,b,\alpha)}{\partial b} = 0 \text{ which yields } \sum_{i=1}^{m} \alpha_i y_i = 0$$

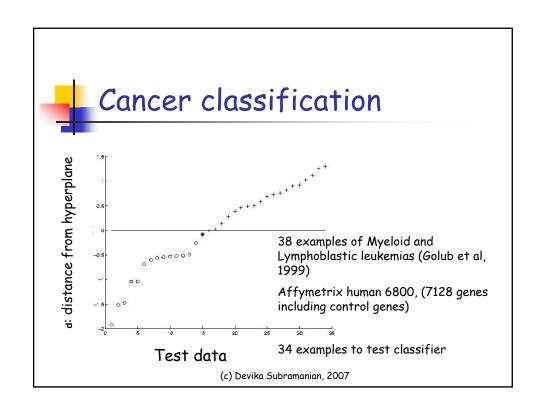
$$\alpha_i \ge 0, i = 1..m$$

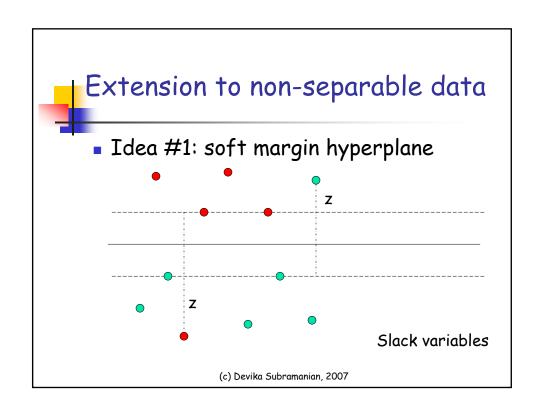
 $y_i(w^T x_i + b) - 1 \ge 0, i = 1..m$

By the KKT complementarity condition,

$$\alpha_i(y_i(w^Tx_i+b)-1)=0, i=1..m$$

Support vectors lie on the margin, because when alpha; ≥ 0 , then $y_i((w.x_i + b) - 1) = 0$.




Solution

$$h(x) = sign(w^{T}x + b)$$
$$= sign\left(\sum_{i=1}^{m} (y_{i}\alpha_{i}(x^{T}x_{i}) + b)\right)$$

The hyperplane decision function uses the support vectors alone, and takes the dot product of the support vectors with x.

Note: b is calculated from the KKT comp. condn.

Soft margin hyperplanes

Minimize
$$\frac{1}{2} \| w \|^2 + c \sum_i \xi_i^{\delta}, \delta \ge 0$$

subject to

$$y_i(w^T x_i + b) \ge 1 - \xi_i, \xi_i \ge 0$$

For delta = 1, this is a convex optimization problem. We can set up the Lagragian and solve for w, b and zsi using the KKT conditions.

(c) Devika Subramanian, 2007

Solving the opt. problem
$$L(w,b,\alpha,\xi) = \frac{1}{2} \|w\|^2 + c \sum_{i=1}^m \xi_i$$

$$-\sum_{i=1}^m \alpha_i (y_i(w.x_i+b) - 1 + \xi_i)$$

$$-\sum_{i=1}^m \mu_i \xi_i$$

The KKT conditions

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial w} = 0 \text{ which yields } w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial b} = 0 \text{ which yields } \sum_{i=1}^{m} \alpha_i y_i = 0$$

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial \xi_i} = 0 \text{ which yields } c - \alpha_i - \mu_i = 0$$

$$\frac{\partial L(w, b, \alpha, \xi)}{\partial \alpha_i} = 0 \text{ which yields } y_i(w^T x_i + b) - 1 + \xi_i \ge 0$$

KKT comp. condn. $\alpha_i(y_i(w^Tx_i+b)-1+\xi_i)=0$

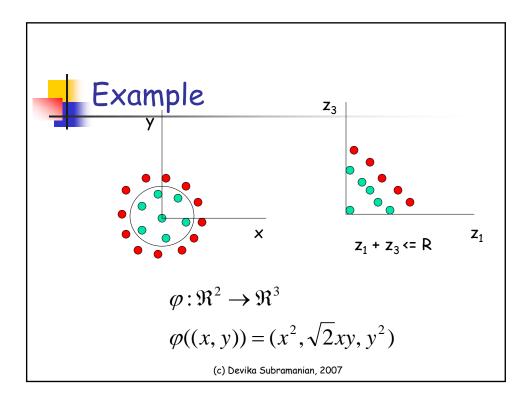
(c) Devika Subramanian, 2007

The solution

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

From the KKT complementarity condition, we get support vectors are the training data points for which

$$y_i(w.x_i + b) - 1 + \xi_i = 0$$


$$y_i(w.x_i + b) = 1 - \xi_i$$

That is, support vectors lie on the margin!

Non-linear support vector machines

- A generalization to handle the case when the decision function f is known to be not a linear function of the input x.
- Central idea: feature spaces. Map the x onto a higher dimensional feature space phi(x). Then, use linear support vector machines to obtain the optimal separating hyperplane in this high dimensional feature space.

Direct mapping

- Direct mapping to a high dimensional space suffers from the curse of dimensionality. To consider all dth order products of an n-dimensional vector, we have to consider
 - (n+d-1)!/(d!(n-1)!) terms
- For n = 16x16, d = 5, we have a 10¹⁰ dimensional feature space.

(c) Devika Subramanian, 2007

A closer look at decision fn

Note that decision function is of the form

$$h(x) = sign(w^{T} x + b)$$
$$= sign\left(\sum_{i} \alpha_{i} y_{i}(x^{T} x_{i}) + b\right)$$

 We only use dot products of the input vectors for determining the optimal separating hyperplane.

Kernels to the rescue

- If we want to find a separating hyperplane in the feature space, we need to compute the dot product of phi(x) and phi(x_i).
- Define a kernel function K which returns the dot product of the images of its two arguments

$$K(x_1, x_2) = \varphi(x_1)^T \varphi(x_2)$$

(c) Devika Subramanian, 2007

Non-linear support vector machines

The decision function is of the form

$$h(x) = sign(w^{T}\phi(x) + b)$$
$$= sign\left(\sum_{i} \alpha_{i} y_{i}(K(x, x_{i})) + b\right)$$

 We only use dot products of the input vectors for determining the optimal separating hyperplane.

Examples of kernels

Polynomial kernel

$$K(x, y) = (x^T y)^{\alpha}$$

 $K(x, y) = (x^{T} y)^{d}$ Second degree polynomial kernel

$$\phi((x_1, x_2)) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$\phi((y_1, y_2)) = (y_1^2, \sqrt{2}y_1y_2, y_2^2)$$

$$K(x, y) = \phi(x)^T \phi(y) = (x_1^2 y_1^2 + 2x_1x_2y_1y_2 + x_2^2 y_2^2)$$

$$= (x_1y_1 + x_2y_2)^2 = ((x_1, x_2)^T (y_1, y_2))^2 = (x^T y)^2$$

Generalized polynomial kernel

$$K(x, y) = (x^T y + c)^d$$

(c) Devika Subramanian, 2007

More kernels

Exponential kernel (Gaussian RBF)

$$K(x,y) = e^{\frac{-\|x-y\|^2}{2\sigma^2}}$$

Tanh kernel

$$K(x, y) = \tanh(kx^T y - \delta)$$

Wolfe dual form

Maximize
$$W(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i}^{T} x_{j})$$

subject to $\alpha_i \ge 0$; i = 1..m

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Derived by substituting for w and b into L(w,b,alpha).

Advantage: maximization expressed in terms of dot products of the x's. Used for learning non-linear SVMs

(c) Devika Subramanian, 2007

Mercer condition

- Identifies the class of functions for which K(x,y) is the dot product of phi(x) and phi(y).
- See the excellent tutorial by C.
 Burges (available from www.kernel-machines.org) for a discussion of this condition.

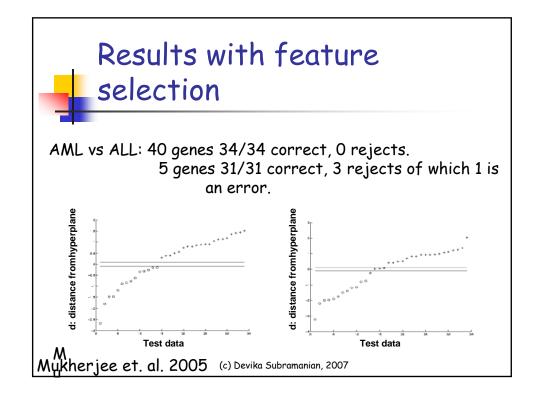
General support vector machines

- We will substitute phi(x) for x in our previous formulation.
- Solutions are of the form:

$$h(x) = sign(w^{T} x + b)$$

$$= sign\left(\sum_{i=1}^{m} \alpha_{i} y_{i} (\varphi(x_{i})^{T} \varphi(x) + b)\right)$$

$$= sign\left(\sum_{i=1}^{m} \alpha_{i} y_{i} K(x_{i}, x) + b\right)$$
(c) Devike Subremenian 2007


SVM demo

Click here

Feature selection

- SVMs as stated use all genes.
- Molecular biologists/oncologists seem to be convinced that only a small subset of genes are responsible for particular biological properties, so they want the "relevant" genes.

Two feature selection techniques

- Recursive feature elimination (RFE):
 based upon perturbation analysis, eliminate genes that perturb the margin the least.
- Optimize leave one out (LOO): based on the optimized leave-one-out error of an SVM.

(c) Devika Subramanian, 2007

Recursive feature elimination

- 1. Solve the SVM problem for vector w
- 2. Rank order elements of vector w by absolute value
- 3. Discard input features/genes corresponding to those vector elements with small absolute magnitude (for smallest 10%)
- 4. Retrain SVM on reduced gene set and goto step (2)

Leave one out estimator

- Leave one point out, train on the others, test on the left out point.
- Repeat this for every point in the training data.
- Leave-one-out estimate is almost unbiased.

(c) Devika Subramanian, 2007

Leave-one-out feature selection

 Use the LOO estimator as an objective function in the search for subsets of features.