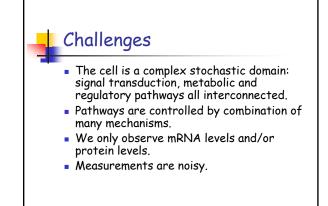
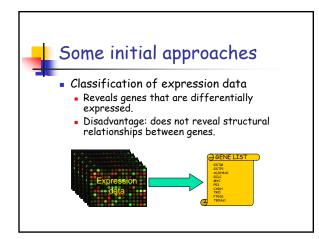
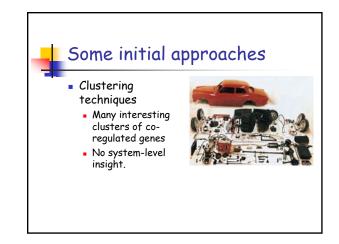
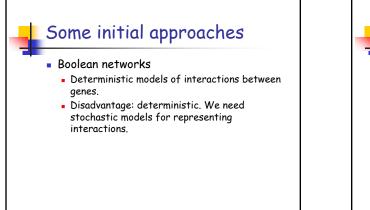


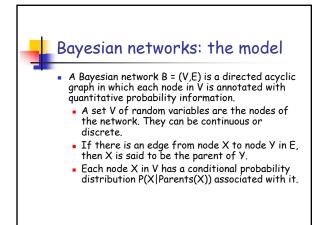
- The problem of learning regulatory, signaling and metabolic networks from data
- A quick intro to Bayesian networks
- Algorithms for learning Bayesian networks from data
- Examples
 - Glutathione metabolism from humans (expression data)
 Regulatory network from yeast cell cycle (expression data)
 - T-cell signaling from humans (flow cytometry data)

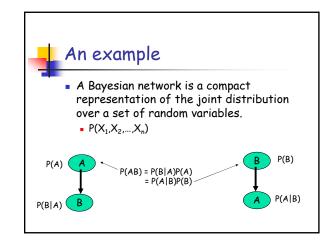


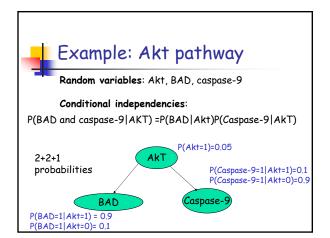


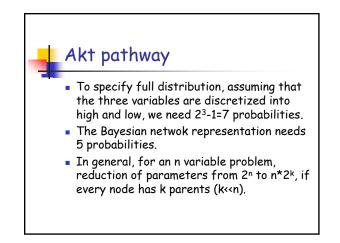


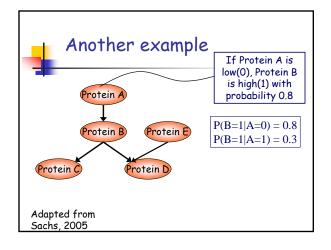


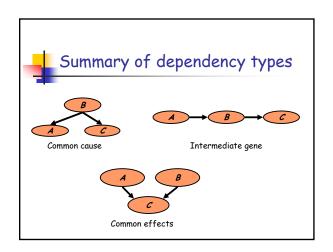


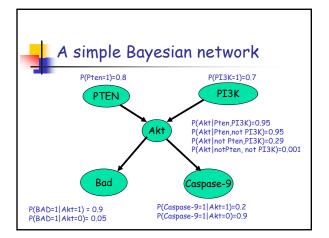


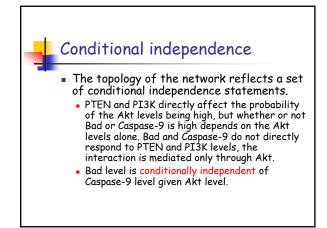


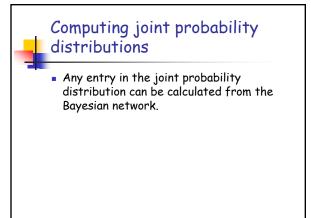


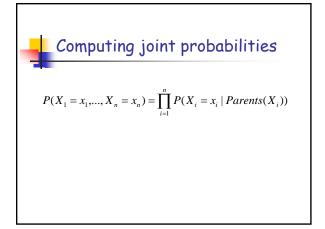


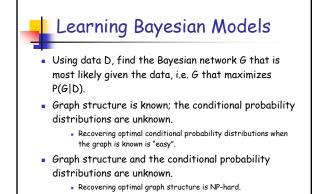




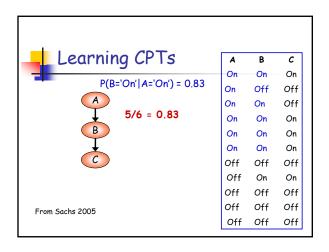




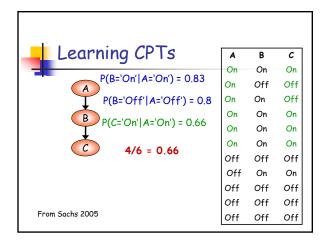




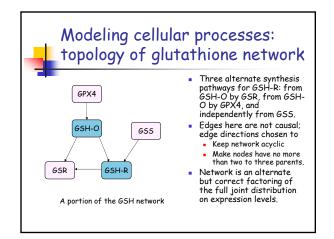
Learning CPTs	Α	В	С
	On	On	On
A	On	Off	Off
\sim	On	On	Off
B	On	On	On
	On	On	On
Ċ	On	On	On
	Off	Off	Off
Known structure!	Off	On	On
	Off	Off	Off
	Off	Off	Off
From Sachs 2005	Off	Off	Off

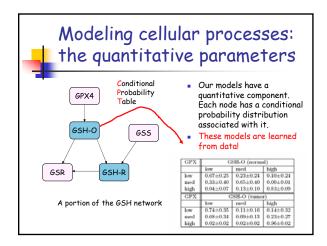


Learning CPTs	Α	В	С
-	On	On	On
P(B='On' A='On') = 0.83	On	Off	Off
P(B='Off' A='Off') = 0.8	On	On	Off
B	On	On	On
4/5 = 0.8	On	On	On
C 475 - 0.0	On	On	On
	Off	Off	Off
	Off	On	On
	Off	Off	Off
	Off	Off	Off
From Sachs 2005	Off	Off	Off
	•11	U 11	011



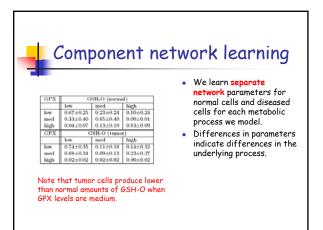
Lear	ning CPTs	Α	В	С
		On	On	On
	P(B='On' A='On') = 0.83	On	Off	Off
A	P(B='Off' A='Off') = 0.8	On	On	Off
B	P(C='On' A='On') = 0.66	On	On	On
		On	On	On
	P(C='On' B='On') = 0.8	On	On	On
C		Off	Off	Off
4/5 = 0.8	Off	On	On	
	Off	Off	Off	
		Off	Off	Off
From Sachs 200	95	Off	Off	Off

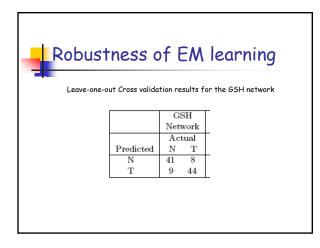


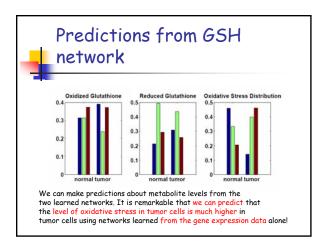


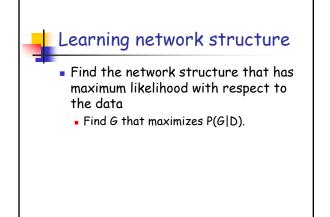
Learning CPTs from data

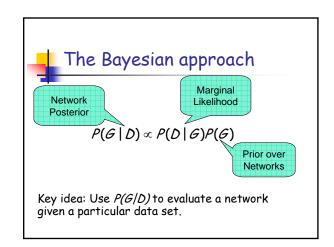
- To learn a CPT of the form P(Y|X), where Y and X are both observed, we can use maximum likelihood estimation.
 - P(Y|X)=count(X&Y)/count(Y)
- When there are unobserved variables, we use the expectation maximization (EM) procedure to make the best guess for the values of the unobserved variables given the observed ones, and readjust the parameters of the network based on the guesses. We find the most likely network parameters given the observed data.

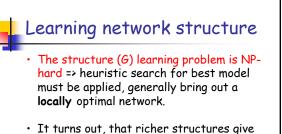




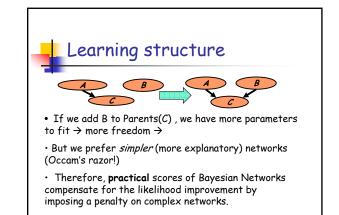


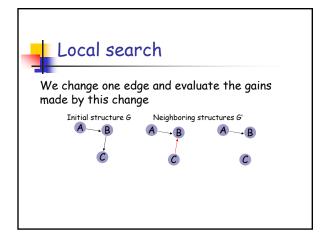


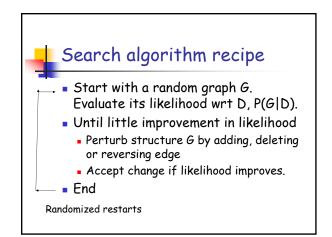


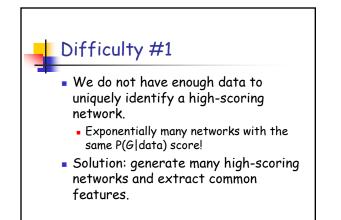


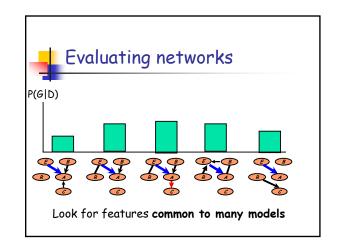
higher likelihood P(D|G) to the data (adding an edge to the graph is always preferable).









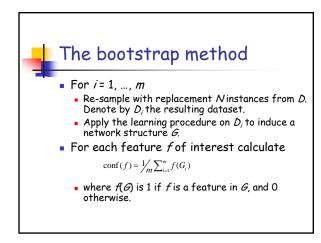


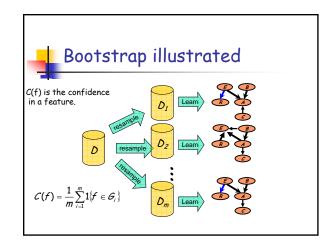
Difficulty #2

- What space of graph perturbations to consider?
- Solution: sparse candidate algorithm (Friedman 1999)
 - Limit potential parents to k most correlated variables.

Estimating statistical confidence in features

- To what extent does the data support a given feature?
- An effective and relatively simple approach for estimating confidence is the bootstrap method.





Improving statistical significance

Sparse Data

- Small number of samples
- "Flat posterior" -- many networks fit the data.

Solution

- estimate confidence in network features
- E.g., two types of features
 - Markov neighbors: X directly interacts with Y (have mutual edge or a mutual child)
 - Order relations: X is an ancestor of Y

