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Microarray technology

 Quick recap
 Proteins: determine state of cell
 Gene: codes for a protein
 mRNA: helps assemble a protein
 mRNA levels ~  gene exp. level ~ protein levels

 Microarrays measure the expression levels 
of thousands of genes at a time.

 Typical experiment: Measure expression of 
genes under different conditions and ask what is 
different at a molecular level and why.
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Affymetrix arrays

50um

1.28cm

~107 oligonucleotides, 
half Perfectly Match mRNA (PM), 
half have one Mismatch (MM)
Raw gene expression is intensity 
difference: PM - MM

Raw image
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Microarray applications

 Biological discovery
 new and better molecular diagnostics

 new molecular targets for therapy

 finding and refining biological pathways

 Recent examples
 molecular diagnosis of leukemia, breast cancer.

 appropriate treatment for genetic signature

 potential new drug targets
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Two computational tasks

 Classifying gene expressions:  this week
 What can be learnt about a cell from the set of 

all mRNA expressed in a cell? Classifying 
diseases: does a patient have benign prostate 
cancer or metastatic prostate cancer? ALL or 
AML?

 Inferring regulatory networks: next week
 What is the “circuitry” of the cell? What are 

the genetic pathways of cancer?
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Common Approaches

 Comparing two measurements at a time
 Person 1, gene G: 1000
 Person 2, gene G: 3200
 Greater than 3-fold change: flag this 

gene
 Comparing one measurement with a 

population of measurements… is it likely 
that the new measurement was drawn from 
same distribution?
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Classification

 Use our knowledge of class values, e.g., 
myeloma vs. normal etc., to gain added 
insight.

 Find genes that are best predictors of 
class.
 Can provide useful tests, e.g. for choosing 

treatment.

 If predictor is comprehensible, may provide 
novel insight, e.g., point to a new therapeutic 
target.
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Classifying gene exp data

Prediction:

AML or ALL

Gene Value

D26528_at 193

D26561_cds1_at     -70

D26561_cds2_at    144

D26561_cds3_at      33

D26579_at 318

D26598_at 1764

D26599_at 1537

D26600_at 1204

D28114_at 707

Prediction

function

New
sample

Microarray chips Images scanned by laser

Datasets
 

Class Sno D26528 D63874 D63880  … 

ALL 2 193 4157 556  

ALL 3 129 11557 476  

ALL 4 44 12125 498  

ALL 5 218 8484 1211  

AML 51 109 3537 131  

AML 52 106 4578 94  

AML 53 211 2431 209  

…      
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The data
Genes

Samples

Expression level of
gene j for sample i

i

j

classi

Red line denotes vector of expression levels for sample i
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Heat maps
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Challenges 
• Microarray data inherit large experimental and 

biological variances
• experimental  bias + tissue heterogeneity
• cross-hybridisation
• „bad design‟: confounding effects

• Microarray data are sparse
• high-dimensionality of  genes
• low number of samples/arrays
• Curse of dimensionality

• Microarray data are highly redundant
• Many genes are co-expressed, thus their expression is 

strongly correlated. 
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Classification

Class +1

Class -1

?

?

?Given examples drawn from
two classes, learn to classify
new examples into the correct
class.

Each point represents
a vector of gene
expression levels
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The data
Genes

Samples

Expression level of
gene j for sample i

i

j

classi

Red line denotes vector of expression levels for sample i

X                             y
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The classification problem

 Given training data {(x1,y1),…,(xm,ym)}, 
xi in Rn, yi in {+1,-1}.

 Estimate function h:Rn
 {+1,-1} such 

that h will correctly classify new
unseen examples from the same 
underlying probability distribution as 
the training data.
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Classification as optimization

 Set S of training data points

 Class H of hypotheses/models

 Optimization problem:  Find the 
hypothesis/model  h in H that best fits all 
data.

Training

Data

h

Hypothesis 

Space
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Objective function

 Minimizing training set error does not 
imply minimizing true error!
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Statistical machine learning 
theory

 Non-asymptotic theory, based on finite 
samples which bounds true error in terms 
of training set error.

 Gives tradeoff between complexity of 
model and amount of data needed to learn 
it.
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A bound on true error

 VC dimension theory allows us to relate train and 
test error for particular function classes. The key 
intuition is that the error of a function is not an 
absolute, but relative to the class of functions it 
is drawn from.

m

hVCmhVC
hRhR train

)4/log()1)(/2)(log(
][][




VC(h) is the VC dimension of the class from which h
is drawn and delta is the probability bound, m is 
the size of the training set (Vapnik, 1995).
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Tradeoffs

 With only a small amount of data, we 
can only discriminate between a small 
number of different hypotheses.

 As we get more data, we have more 
evidence, so we can consider more 
alternative hypotheses.

 Complex hypotheses give better fit 
to the data.
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Simple hypothesis will under-
fit

Cannot take advantage of more data!

x

y

Best least squares
line 
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Complex hypotheses will 
overfit

x

y
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Adaptive hypothesis space 
selection

 Find hypothesis h to minimize
error(h) + l complexity(h)

Regularization
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Support vector machines

 A new generation of learning algorithms 
based on
 Non-linear optimization

 Statistics

 Functional analysis

 Come with theoretical guarantees on 
performance, because the learning problem 
can be reduced to convex optimization.
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Applications

 SVMs have been used in a wide 
variety of tasks and are reputed to 
be the best for
 Text categorization

 Handwriting recognition

 Classification of gene expression data

24



(c) Devika Subramanian, 2009

History

 Introduced in 1992 by Boser, Guyon 
and Vapnik (COLT 1992).

 Very rapid growth since then. 2 
excellent textbooks and lots of new 
work both in theory and applications.

 www.kernel-machines.org is a great 
resource for learning about SVMs.
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The Problem

 Given training data {(x1,y1),…,(xm,ym)}, 
xi in Rn, yi in {+1,-1}.

 Estimate function h:Rn
 {+1,-1} such 

that h will correctly classify new 
unseen examples from the same 
underlying probability distribution as 
the training data.
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Linear support vector machines

 Consider the class of oriented 
hyperplanes in Rn. 

 h(x) = sign(w.x + b)

 If data is linearly separable, then 
there is a function from this class 
that separates the +1 points from the 
–1 points.
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Linear separating hyperplanes

 Unfortunately, there are an infinite 
number of linear hyperplanes that 
separate the data!
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Geometric Margin
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Geometric interpretation

w

The optimal
hyperplane is
orthogonal to
the shortest
line connecting
the convex hulls
of the two 
classes and
intersects it
halfway between
them.

wTx+b=-1

wTx+b=+1

lambda

30



(c) Devika Subramanian, 2009

Margin maximization
 Let x+ and x- be the two points on the convex hulls 

of the positive and negative data which are closest 
to the maximal margin hyperplane.
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Lambda is the margin width,
It is inversely proportional
to w.w. So to maximize
margin, we minimize w. 
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Optimal separating hyperplane

 Among all separating hyperplanes, there is 
one with the maximum margin.

 A hyperplane separating data 
(x1,y1),…,(xm,ym) satisfies
 (w.xi) + b >= 1 if yi = +1
 (w.xi) + b <= -1 if yi = -1

 Or in short…
 yi[(w.xi)+b] >= 1, for i = 1..m

 The optimal hyperplane satisfies the above 
conditions and has the minimal norm 
||w||2=w.w
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Learning the maximum margin 
classifier
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Quadratic programming!
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Solving the quadratic program
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L must be minimized with respect to w and b
and maximized with respect to the Lagrange
multipliers alphai

The first derivative with respect to w and b
must vanish at the saddle point.
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Solving the quadratic program
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This means w has an expansion in terms of
a subset of the training data, namely those
(xi,yi) for which alphai > 0. These data points
are called support vectors. None of the other
data points matter. The maximal margin
hyperplane is completely determined by the 
support vectors.
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Solving the quadratic program
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Geometric interpretation

w

The optimal
hyperplane is
determined
by the 3 support
vectors.

wTx+b=-1

wTx+b=+1

lambda
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Solution
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The hyperplane decision function uses the 
support vectors alone, and takes the dot product
of the support vectors with x.

Note: b is calculated from the KKT comp. condn.
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Cancer classification
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Test data

38 examples of Myeloid and 
Lymphoblastic leukemias (Golub et al, 
1999)

Affymetrix human 6800, (7128 genes 
including control genes)

34 examples to test classifier
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Extension to non-separable data

 Idea #1: soft margin hyperplane

z

z

Slack variables
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Soft margin hyperplanes
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For delta = 1, this is a convex optimization problem.
We can set up the Lagragian and solve for w, b
and zsi using the KKT conditions.
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Solving the opt. problem
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The KKT conditions
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The solution
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From the KKT complementarity condition, we get
support vectors are the training data points for
which
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That is, support vectors lie on the margin!
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Non-linear support vector 
machines

 A generalization to handle the case when 
the decision function f is known to be not a 
linear function of the input x.

 Central idea: feature spaces. Map the x 
onto a higher dimensional feature space 
phi(x). Then, use linear support vector 
machines to obtain the optimal separating 
hyperplane in this high dimensional feature 
space.
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Example

x
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z3

z1 + z3 <= R
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Direct mapping

 Direct mapping to a high dimensional 
space suffers from the curse of 
dimensionality. To consider all dth

order products of an n-dimensional 
vector, we have to consider 
 (n+d-1)!/(d!(n-1)!) terms

 For n = 16x16, d = 5, we have a 1010 

dimensional feature space.
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A closer look at decision fn

 Note that decision function is of the form

 We only use dot products of the input 
vectors for determining the optimal 
separating hyperplane.
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Kernels to the rescue

 If we want to find a separating 
hyperplane in the feature space, we 
need to compute the dot product of 
phi(x) and phi(xi).

 Define a kernel function K which 
returns the dot product of the 
images of its two arguments

)()(),( 2121 xxxxK T
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Non-linear support vector 
machines

 The decision function is of the form

 We only use dot products of the input 
vectors for determining the optimal 
separating hyperplane.
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Examples of kernels

 Polynomial kernel

 Second degree polynomial kernel

 Generalized polynomial kernel

dT yxyxK )(),( 

22

2121

2

2211

2

2

2

22121

2

1

2

1

2

221

2

121

2

221

2

121

)()),(),(()(

)2()()(),(

),2,()),((

),2,()),((

yxyyxxyxyx

yxyyxxyxyxyxK

yyyyyy

xxxxxx

TT

T















dT cyxyxK )(),( 
51



(c) Devika Subramanian, 2009

More kernels

 Exponential kernel (Gaussian RBF)

 Tanh kernel
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Wolfe dual form
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Derived by substituting for w and b into L(w,b,alpha).

Advantage: maximization expressed in terms of dot
products of the x‟s. Used for learning non-linear
SVMs
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Mercer condition

 Identifies the class of functions for 
which K(x,y) is the dot product of 
phi(x) and phi(y).

 See the excellent tutorial by C. 
Burges (available from www.kernel-
machines.org) for a discussion of this 
condition.
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General support vector 
machines

 We will substitute phi(x) for x in our 
previous formulation.

 Solutions are of the form:
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SVM demo

Click here
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Feature selection

 SVMs as stated use all genes.

 Molecular biologists/oncologists seem 
to be convinced that only a small 
subset of genes are responsible for 
particular biological properties, so 
they want the “relevant” genes.

57



(c) Devika Subramanian, 2009

AML vs ALL: 40 genes 34/34 correct, 0 rejects.
5 genes 31/31 correct, 3 rejects of which 1 is 

an error.
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Results with feature 
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Mukherjee et. al. 2005 58
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Two feature selection 
techniques

 Recursive feature elimination (RFE): 
based upon perturbation analysis, eliminate genes that 
perturb the margin the least.

 Optimize leave one out (LOO): based on the 
optimized leave-one-out error of an SVM.
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Recursive feature 
elimination
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