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Networks

 Regulatory network: network of control 
decisions used to turn genes on/off.

 Signaling network: interactions among 
genes, gene products and small molecules 
that activate cellular processes.

 Metabolic network: network of proteins 
that synthesize and breakdown cellular 
molecules.

2(c) Devika Subramanian, 2009



Regulators
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From expression data to 
gene regulatory networks

Yeast cell cycleMicroarray data
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From flow cytometry data to 
signaling networks
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Outline

 The problem of learning regulatory, signaling and 
metabolic networks from data

 A quick intro to Bayesian networks
 Algorithms for learning Bayesian networks from 

data
 Examples

 Glutathione metabolism from humans (expression data)
 Regulatory network from yeast cell cycle (expression 

data)
 T-cell signaling from humans (flow cytometry data)
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Challenges

 The cell is a complex stochastic domain: 
signal transduction, metabolic and 
regulatory pathways all interconnected.

 Pathways are controlled by combination of 
many mechanisms.

 We only observe mRNA levels and/or 
protein levels.

 Measurements are noisy.
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Some initial approaches

 Classification of expression data
 Reveals genes that are differentially 

expressed.
 Disadvantage: does not reveal structural 

relationships between genes.

Expression

data

GSTM
GSTP1
ALDH4A1
GCLC
MYC
P53
CADH
TRO
PTGS1
TBXAs1

GENE LIST
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Some initial approaches

 Clustering 
techniques
 Many interesting 

clusters of co-
regulated genes

 No system-level 
insight.
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Some initial approaches

 Boolean networks
 Deterministic models of interactions between 

genes.

 Disadvantage: deterministic. We need 
stochastic models for representing 
interactions.
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Why Bayesian networks?

 The important science/technology to come 
out of AI in the last 15 years.

 Underlies all important applications today.
 Frames every question as the estimation of 

a conditional probability
 P(disease/problem|set of symptoms)
 P(email is spam|email text+header)
 P(hurricane will hit place X|movement history)
 P(sentence|acoustic signal)
 P(regulatory network|gene exp data)
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Bayesian networks: the model

 A Bayesian network B = (V,E) is a directed acyclic 
graph in which each node in V is annotated with 
quantitative probability information.
 A set V of random variables are the nodes of 

the network. They can be continuous or 
discrete.

 If there is an edge from node X to node Y in E, 
then X is said to be the parent of Y.

 Each node X in V has a conditional probability 
distribution P(X|Parents(X)) associated with it.

13(c) Devika Subramanian, 2009



An example

 A Bayesian network is a compact 
representation of the joint distribution 
over a set of random variables.
 P(X1,X2,…,Xn)

A

B A

BP(A)

P(B|A)

P(B)

P(A|B)

P(AB) = P(B|A)P(A)
= P(A|B)P(B)
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Example: Akt pathway
Random variables: Akt, BAD, caspase-9

Conditional independencies:

P(BAD and caspase-9|AKT) =P(BAD|Akt)P(Caspase-9|AkT)

AkT

BAD Caspase-9

P(Caspase-9=1|Akt=1)=0.1
P(Caspase-9=1|Akt=0)=0.9

P(BAD=1|Akt=1) = 0.9
P(BAD=1|Akt=0)= 0.1

P(Akt=1)=0.05

2+2+1
probabilities
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Akt pathway

 To specify full distribution, assuming that 
the three variables are discretized into 
high and low, we need 23-1=7 probabilities.

 The Bayesian netwok representation needs 
5 probabilities.

 In general, for an n variable problem, 
reduction of parameters from 2n to n*2k, if 
every node has k parents (k<<n).
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Another example

Protein A

Protein B

Protein C Protein D

Protein E
P(B=1|A=0) = 0.8
P(B=1|A=1) = 0.3

If Protein A is 
low(0), Protein B 
is high(1) with 
probability 0.8

Adapted from
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Summary of dependency types

Common cause

A CB

Intermediate gene

B

A C

A

C

B

Common effects
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A simple Bayesian network

Akt

Caspase-9Bad

PI3KPTEN

P(BAD=1|Akt=1) = 0.9
P(BAD=1|Akt=0)= 0.05

P(Caspase-9=1|Akt=1)=0.2
P(Caspase-9=1|Akt=0)=0.9

P(Akt|Pten,PI3K)=0.95
P(Akt|Pten,not PI3K)=0.95
P(Akt|not Pten,PI3K)=0.29
P(Akt|notPten, not PI3K)=0.001

P(Pten=1)=0.8 P(PI3K=1)=0.7
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Conditional independence

 The topology of the network reflects a set 
of conditional independence statements.
 PTEN and PI3K directly affect the probability 

of the Akt levels being high, but whether or not 
Bad or Caspase-9 is high depends on the Akt 
levels alone. Bad and Caspase-9 do not directly 
respond to PTEN and PI3K levels, the 
interaction is mediated only through Akt. 

 Bad level is conditionally independent of 
Caspase-9 level given Akt level.
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Computing joint probability 
distributions

 Any entry in the joint probability 
distribution can be calculated from the 
Bayesian network.
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Computing joint probabilities
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Learning Bayesian Models

 Using data D, find the Bayesian network G that is 

most likely given the data, i.e. G that maximizes 

P(G|D).

 Graph structure is known; the conditional probability 

distributions are unknown.
 Recovering optimal conditional probability distributions when 

the graph is known is “easy”. 

 Graph structure and the conditional probability 

distributions are unknown. 
 Recovering optimal graph structure is NP-hard.
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Learning CPTs

A
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A B C

On On On
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On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

Known structure!
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Learning CPTs

A

B

C

P(B=„On‟|A=„On‟) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

5/6 = 0.83

From Sachs 2005
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Learning CPTs

A

B

C

P(B=„On‟|A=„On‟) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

P(B=„Off‟|A=„Off‟) = 0.8

4/5 = 0.8

From Sachs 2005
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Learning CPTs

A

B

C

P(B=„On‟|A=„On‟) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

P(B=„Off‟|A=„Off‟) = 0.8

P(C=„On‟|A=„On‟) = 0.66

4/6 = 0.66

From Sachs 2005
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Learning CPTs

A
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C

P(B=„On‟|A=„On‟) = 0.83

A B C

On On On

On Off Off

On On Off

On On On
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Off Off Off

P(B=„Off‟|A=„Off‟) = 0.8

P(C=„On‟|A=„On‟) = 0.66

4/5 = 0.8

P(C=„On‟|B=„On‟) = 0.8

From Sachs 2005
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Modeling cellular processes:  
topology of glutathione network

 Three alternate synthesis 
pathways for GSH-R: from 
GSH-O by GSR, from GSH-
O by GPX4, and 
independently from GSS. 

 Edges here are not causal; 
edge directions chosen to
 Keep network acyclic
 Make nodes have no more 

than two to three parents.

 Network is an alternate 
but correct factoring of 
the full joint distribution 
on expression levels.

GPX4

GSH-O

GSH-R

GSS

A portion of the GSH network

GSR
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Modeling cellular processes: 
the quantitative parameters

 Our models have a 
quantitative component. Each 
node has a conditional 
probability distribution 
associated with it.

 These models are learned 
from data!

GPX4

GSH-O

GSH-R

GSS

A portion of the GSH network

GSR

Conditional
Probability
Table
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Learning CPTs from data

 To learn a CPT of the form P(Y|X), where Y and X 
are both observed, we can use maximum likelihood 
estimation.

 P(Y|X)=count(X&Y)/count(Y)

 When there are unobserved variables, we use the 
expectation maximization (EM) procedure to make 
the best guess for the values of the unobserved 
variables given the observed ones, and readjust 
the parameters of the network based on the 
guesses.  We find the most likely network 
parameters given the observed data.
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Component network learning

 We learn separate 
network parameters for 
normal cells and diseased 
cells for each metabolic 
process we model.

 Differences in parameters 
indicate differences in the 
underlying process.

Note that tumor cells produce lower
than normal amounts of GSH-O when
GPX levels are medium.
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Robustness of EM learning

Leave-one-out Cross validation results for the GSH network
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Predictions from GSH 
network

We can make predictions about metabolite levels from the 
two learned networks. It is remarkable that we can predict that 
the level of oxidative stress in tumor cells is much higher in
tumor cells using networks learned from the gene expression data alone!
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Learning network structure

 Find the network structure that has 
maximum likelihood with respect to 
the data
 Find G that maximizes P(G|D).
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The Bayesian approach

)()|()|( GPGDPDGP 

Key idea: Use P(G|D) to evaluate a network 
given a particular data set.

Marginal 

Likelihood

Prior over 

Networks

Network 

Posterior
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Learning network structure

• The structure (G) learning problem is NP-
hard => heuristic search for best model 
must be applied, generally bring out a 
locally optimal network.

• It turns out, that richer structures give 
higher likelihood P(D|G) to the data (adding 
an edge to the graph is always preferable).
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Learning structure

A

C

BA

C

B

• If we add B to Parents(C) , we have more parameters 
to fit  more freedom 

• But we prefer simpler (more explanatory) networks 
(Occam‟s razor!)

• Therefore, practical scores of Bayesian Networks 
compensate for the likelihood improvement by 
imposing a penalty on complex networks.
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We change one edge and evaluate the gains 
made by this change

B

C

A B

C

A B

C

A
Initial structure G Neighboring structures G‟

Local search
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Search algorithm recipe

 Start with a random graph G. 
Evaluate its likelihood wrt D, P(G|D).

 Until little improvement in likelihood
 Perturb structure G by adding, deleting 

or reversing edge

 Accept change if likelihood improves.

 End

Randomized restarts
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Difficulty #1

 We do not have enough data to 
uniquely identify a high-scoring 
network.
 Exponentially many networks with the 

same P(G|data) score!

 Solution: generate many high-scoring 
networks and extract common 
features.
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Evaluating networks
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Look for features common to many models
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Difficulty #2

 What space of graph perturbations to 
consider?

 Solution: sparse candidate algorithm 
(Friedman 1999)

 Limit potential parents to k most correlated 
variables.

43(c) Devika Subramanian, 2009



Estimating statistical 
confidence in features

 To what extent does the data support 
a given feature?

 An effective and relatively simple 
approach for estimating confidence is 
the bootstrap method.
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The bootstrap method

 For i = 1, …, m
 Re-sample with replacement N instances from D. 

Denote by Di the resulting dataset.
 Apply the learning procedure on Di to induce a 

network structure G.

 For each feature f of interest calculate

 where f(G) is 1 if f is a feature in G, and 0 
otherwise.

 


m

i iGf
m

f
1

)(1)(conf
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Bootstrap illustrated
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C(f) is the confidence
in a feature.
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Improving statistical 
significance

Sparse Data
 Small number of samples
 “Flat posterior” -- many networks fit the 

data.
Solution
 estimate confidence in network features
 E.g., two types of features

 Markov neighbors: X directly interacts with Y 
(have mutual edge or a mutual child)

 Order relations: X is an ancestor of Y
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Datasets  
of cells

• condition „a‟
• condition „b‟
•condition…„n‟

12 Color Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (96 well format)

T-Lymphocyte Data (Sachs 2005)

 Primary human T-Cells
 9 conditions 

 (6 Specific interventions)

 9 phosphoproteins, 2 
phospolipids

 600 cells per condition
 5400 data-points
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Using correlations

PKC

Raf

Erk

Mek

Plc

PKA

Akt

Jnk

P38

PIP2

PIP3

Phospho-Proteins

Phospho-Lipids
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Statistical Dependencies

But, how can statistical dependencies 

determine directionality?

A

B

C D

E

Ph
os

ph
o 

A
Phospho B
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The Power of Interventions

A B

No Manipulations

A inhibited

B inhibited

Ph
os

ph
o 

A

Phospho B

B A

B A
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Dismissing Edges

Phospho A Phospho B

Ph
os

ph
o 

B

Ph
os

ph
o 

C

Phospho A

Ph
os

ph
o 

C

A

B

C D

E

Edges A->B and B->C explain 
dependence of A and C  

dismissing the edge 
between them 
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Context Specificity 

Phospho B

Ph
os

ph
o 

D

E is high

 B and D seem unrelated

 Relationship is revealed 
by considering 
simultaneous 
measurement of E

 Demonstrates the need 
for simultaneous 
measurements of 
variables

 Pairwise computational 
analysis (e.g. 
correlations) 
insufficient

Sachs 2005
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Indirect Edges

What would happen if B was not measured?

A

C D

B E

Phospho A

Ph
os

ph
o 

C
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Summary

Influence     
diagram 

of 
measured 
variables

Bayesian 
Network  
Analysis

Datasets  
of cells

• condition „a‟
• condition „b‟
•condition…„n‟

Multiparameter Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (96 well format)
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PKC

Raf

P44/42

Mek

Plc

PKA

Akt

Jnk P38

PIP2

PIP3

Phospho-Proteins

Phospho-Lipids

Perturbed in data

Inferred Network

Sachs 2005
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PKC

Raf

P44/42

Mek

Plc

PKA

Akt

Jnk P38

PIP2

PIP3

Phospho-Proteins

Phospho-Lipids

Perturbed in data

How good is the learned network?

Direct phosphorylation
Sachs 2005
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The need for cytometry data

 Direct phosphorylation:

Mek 

Difficult to detect using other forms of 
high-throughput data:

-Protein-protein interaction data

-Microarrays

Erk 
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PKC

Raf

P44/42

Mek

Plc

PKA

Akt

Jnk P38

PIP2

PIP3

Phospho-Proteins

Phospho-Lipids

Perturbed in data

How good is the learned network?

Indirect Signaling
Sachs 2005
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Ability to handle missing nodes

 Indirect signaling

PKC Jnk PKC Mapkkk Jnk

Not measured

Mapkk

Indirect connections can be found even when the 
intermediate molecule(s) are not measured

Sachs 2005
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Indirect signaling

 Is this a mistake?

 The real picture

 Phospho-protein specific

 More than one pathway of influence

PKC Raf Mek

PKC Rafs259 Mek

Rafs497

Ras
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PKC

Raf

P44/42

Mek

Plc

PKA

Akt

Jnk P38

PIP2

PIP3

Expected Pathway

 15/17 Classic

Phospho-Proteins

Phospho-Lipids

Perturbed in data

How good is the learned network?
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PKC

Raf

P44/42

Mek

Plc

PKA

Akt

Jnk P38

PIP2

PIP3

Expected Pathway

Reported

Missed

 15/17 Classic

 17/17 
Reported

 3 Missed

Reversed

Phospho-Proteins

Phospho-Lipids

Perturbed in data

How good is the learned network?
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Prediction

 Erk influence on Akt 
previously reported in 
colon cancer cell lines

Predictions:
 Erk1/2 influences Akt

 While correlated, Erk1/2 
does not influence PKA

PKC

Raf

Erk1/2

Mek

PKA

Akt

Sachs 2005
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Validation

control, stimulated

Erk1 siRNA, stimulated

 SiRNA on Erk1/Erk2
 Select transfected cells
 Measure Akt and PKA

10
0

10
1

10
2

10
3

10
4

APC-A: p-akt-647 APC-A

10
0

10
1

10
2

10
3

10
4

PE-A: p-pka-546 PE-A

P-Akt P-PKA

P=9.4e-5 P=0.28

Sachs 2005

65(c) Devika Subramanian, 2009



Summary

 Proof of principle: Automated reconstruction 
of signaling pathway in human cells

 Advantages:
 In-vivo

 Directed edges (causality)

 Detects direct and in-direct influences

 Single cell

 Choose sub-populations of interest

 Disadvantage:
 Static, cells fixed and stained

 a-cyclic Sachs et al, Science 2005
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

d[R]
dt
 k1[LR]

     k2[R][L] 

          ...

Spectrum of modeling tools in 
systems biology

SVMs
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