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i Networks

s Regulatory network: network of control
decisions used to turn genes on/off.

s Signaling network: interactions among
genes, gene products and small molecules
that activate cellular processes.

= Metabolic network: network of proteins
that synthesize and breakdown cellular
molecules.

(c) Devika Subramanian, 2009



Regulators

d Transcript d \
—»> level '
. i T
|| | > == Activator Activator
oo comea 220 p — — |
Upstream region Context A T ©
of target gene False rue =2
a
b vy s
S
©
Activator = Repressor Repressort 3
—— expression o
== 4 |
(] e
== False True
N
e
Activator i /
I\ 4 T t
binding site Context B eaxrgr%s%ieonne "

Activator

Y
Module genes

Induced I
—-» —~_— Repressed
\W_} \—Y—/ Context C _\:\v *;z; *50
Repressor  Activator g & N
binding site  binding site L P cP

(c) Devika Subramanian, 2009



Genetic regulatory network of
‘L B. subtilis

@ rroein
n gene

promoter

oA hpr (scoR)

Genetic regulatory network controlling the initiation
Of SPOPUIGTIOH. (c) Devika Subramanian, 2009 4



From expression data to
gene regulatory networks
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From flow cytometry data to
sighaling networks

K. Sachs 2005 (c) Devika Subramanian, 2009 Slgnallng PClThWClé/S



i Outline

= The problem of learning regulatory, signaling and
me’rabohc networks from data

= A quick infro to Bayesian networks

= Algorithms for learning Bayesian networks from
data

= Examples

= Glutathione metabolism from humans (expression data)

= Regulatory network from yeast cell cycle (expression
data)

= T-cell signaling from humans (flow cytometry data)

(c) Devika Subramanian, 2009



i Challenges

= The cell is a complex stochastic domain:
sighal tfransduction, metabolic and
regulatory pathways all interconnected.

s Pathways are controlled by combination of
many mechanisms.

= We only observe mRNA levels and/or
protein levels.

= Measurements are noisy.

(c) Devika Subramanian, 2009



Some initial approaches

= Classification of expression data

= Reveals genes that are differentially
expressed.

= Disadvantage: does not reveal structural
relationships between genes.
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Some initial approaches

= Clustering
techniques
= Many interesting

clusters of co-
regulated genes

= No system-level
insight.

(c) Devika Subramanian, 2009 10



i Some initial approaches

= Boolean networks
= Deterministic models of interactions between
genes.

= Disadvantage: deterministic. We need
stochastic models for representing
intferactions.

(c) Devika Subramanian, 2009 11



i Why Bayesian networks?

= The important science/technology to come
out of AT in the last 15 years.

= Underlies all important applications today.

= Frames every question as the estimation of
a conditional probability

P(disease/problem|set of symptoms)

P(email is spam|email text+header)

P(hurricane will hit place X|movement history)

P(sentence|acoustic signal)

P(regulatory network|gene exp data)

(c) Devika Subramanian, 2009 12



:L Bayesian networks: the model

= A Bayesian network B = (V,E) is a directed acyclic
graph in which each node in V is annotated with
quantitative probability information.

s A set V of random variables are the nodes of
the network. They can be continuous or
discrete.

= If there is an edge from node X tfo node Y in E,
then X is said to be the parent of V.

= Each node X in V has a conditional probability
distribution P(X|Parents(X)) associated with it.

(c) Devika Subramanian, 2009 13



i An example

= A Bayesian network is a compact
representation of the joint distribution
over a set of random variables.

« P(X(, X, %)

r(a) CAD \P(AB):P(BIA)P(A)/ (e) *®

= P(A[B)P(B)

oeis) @8 @ e

(c) Devika Subramanian, 2009 14



‘L Example: Akt pathway

Random variables: Akt, BAD, caspase-9

Conditional independencies:
P(BAD and caspase-9|AKT) =P(BAD|Akt)P(Caspase-9|AkT)

P(Akt=1)=0.05

2+2+1
probabilities P(Caspase-9=1| Akt=1)=0.1

P(Caspase-9=1|Akt=0)=0.9

P(BAD=1|Akt=1) = 0.9 | _
P(BA D=1 | Ak'|'=O)= 0.1 (c) Devika Subramanian, 2009 15



i Akt pathway

= To specify full distribution, assuming that
the three variables are discretized into
high and low, we need 23-1=7 probabilities.

= The Bayesian netwok representation needs
5 probabilities.

= In general, for an n variable problem,
reduction of parameters from 2" to n*2k, if
every node has k parents (k<«n).

(c) Devika Subramanian, 2009 16



If Protein A is
low(0O), Protein B
is high(1) with
probability 0.8

‘_L Another example

QO OO

P(B=1|A=0)
P(B=1]A=1)

(.
(

) —
L]

Adapted from
SGChS, 2005 (c) Devika Subramanian, 2009 17



i Summary of dependency types

O—EO—Te>

Common cause Intermediate gene

Common effects
(c) Devika Subramanian, 2009 18




* A simple Bayesian network

P(Pten=1)=0.8 P(PI3K=1)=0.7

Pten,PI3K)=0.95
P(Akt|Pten,not PI3K)=0.95
P(Akt|not Pten PI3K)=0.29
notPten, not PI3K)=0.001

P(BAD=1| Akt=1) = 0.9 E(Caspase-9jilAk’ffé)=_%2
P(BAD=1|Akt=0)= 0.05 () pehCaspase-2=11Akt=0)=0.9 19



i Conditional independence

= The topology of the network reflects a set
of conditional independence statements.

= PTEN and PI3K directly affect the probability
of the Akt levels being high, but whether or not
Bad or Caspase-9 is high depends on the Akt
levels alone. Bad and Caspase-9 do not directly
respond o PTEN and PI3K levels, the
interaction is mediated only through Akt.

= Bad level is conditionally independent of
Caspase-9 level given Akt level.

(c) Devika Subramanian, 2009 20



Computing joint probability
i distributions

= Any entry in the joint probability
distribution can be calculated from the
Bayesian network.

(c) Devika Subramanian, 2009
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‘L Computing joint probabilities

(c) Devika Subramanian, 2009
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i Learning Bayesian Models

= Using data D, find the Bayesian network G that is
most likely given the datq, i.e. G that maximizes
P(G|D).

= Graph structure is known; the conditional probability

distributions are unknown.

= Recovering optimal conditional probability distributions when
the graph is known is "easy".

s Graph structure and the conditional probability

distributions are unknown.

= Recovering optimal graph structure is NP-hard.
(c) Devika Subramanian, 2009
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i Learning CPTs

Known structurel

From Sachs 2005

(c) Devika Subramanian, 2009
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Learning CPTs

P(B='On'| A='On") = 0.83

5/6 = 0.83

From Sachs 2005

(c) Devika Subramanian, 200¢
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Learning CPTs

From Sachs 2005

P(B='On'| A='On") = 0.83
P(B='Off'|A='Off') = 0.8

4/5 = 0.8

(c) Devika Subramanian, 200¢
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Learning CPTs

P(B='On'|A='On") = 0.83
P(B='Off'|A='Off') = 0.8

o P(C='On'|A='On') = 0.66

From Sachs 2005

4/6 = 0.66

(c) Devika Subramanian, 200¢
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Learning CPTs

From Sachs 2005

P(B='On'|A='On') = 0.83
P(B="Off'|A='Off')= 0.8
P(C='On'|A='On') = 0.66
P(C='On’'|B='On) = 0.8

4/5 = 0.8

(c) Devika Subramanian, 200¢
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Modeling cellular processes:
topology of glutathione network

| GPX4 I

GSH-O

A portion of the GSH network

= Three alternate synthesis

pathways for GSH-R: from
GSH-O by GSR, from GSH-
O by 6PX4, and
independently from GSS.

Edges here are not causal;
edge directions chosen to
= Keep network acyclic

= Make nodes have no more
than two to three parents.

Network is an alternate
but correct factoring of
the full joint distribution
on expression levels.

(c) Devika Subramanian, 2009 29



Modeling cellular processes:
the quantitative parameters

Conditional E
Probability
Table

| GPX4 I

Our models have a
quantitative component. Each
node has a conditional
probability distribution
associated with it.

m These models are learned

from datal
GPX GSH-O (normal)
Lo med high
Loy 067025 | 0.234+0.24 | 010024
med 0.33040 | 065040 [ 0.00L£0.01
high 0.04+007 | 0.134+0.10 [ 0.83+£0.09
GPX GSH-O (tumor)
Lo med high
A portion of the GSH network low 0.74+0.35 | 0.11+0.16 | 0.14+0.32
med 0.68+0.34 | 0.09+0.13 | 0.23£0.27
high 0.024+0002 | 0.02+0.02 [ 0.96+0.02

(c) Devika Subramanian, 2009
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i Learning CPTs from data

= To learn a CPT of the form P(Y|X), where Y and X
are both observed, we can use maximum likelihood
estimation.

= P(Y|X)=count(X&Y)/count(Y)

= When there are unobserved variables, we use the
expectation maximization (EM) procedure to make
the best guess for the values of the unobserved
variables given the observed ones, and readjust
the parameters of the network based on the
guesses. We find the most likely network
parameters given the observed data.

(c) Devika Subramanian, 2009 31



i Component network learning

GPX GSH-O (normal)

Lo med high
low 0.67+0.25 | 0.23+0.24 | 0.10+£0.24
med 0.334+0.40 | 0.65£0.40 | 0.00£0.01
high 0044007 | 0.13+£0.10 | 0.83£0.09
GPX GSH-O (tumor)

Lo med high
low 0.7440.35 | 0.11+£0.16 | 0.14+£0.32
med 0.6584+0.34 | 0.09+0.13 | 0.23£0.27
high 0024002 | 0.02+0.02 | 0.96+£0.02

Note that tumor cells produce lower
than normal amounts of GSH-O when

GPX levels are medium.

We learn separate
network parameters for
normal cells and diseased
cells for each metabolic
process we model.

Differences in parameters
indicate differences in the
underlying process.

(c) Devika Subramanian, 2009 32



iRobus’rness of EM learning

Leave-one-out Cross validation results for the GSH network

sH
MNetwork
A ctual
Fredicted N T
N 41 5
T 9 44

(c) Devika Subramanian, 2009



Predictions from GSH
network

Oxidized Glutathione Reduced Glutathione Oxidative Stress Distribution
0.4 0.5 = 0.5
0.3 — | 04 1 0.4
— 0.3 1 0.37
0.2 1
0.2 1 0.27
0.1 0.1 1 0417
0 = — 0 — — 0 — —
normal tumor normal tumor normal tumor

We can make predictions about metabolite levels from the
two learned networks. It is remarkable that we can predict that
the level of oxidative stress in tumor cells is much higher in

tumor cells using networks learned from the gene expression data alonel!
(c) Devika Subramanian, 2009 34



i Learning network structure

s Find the network structure that has
maximum likelihood with respect to
the data

= Find G that maximizes P(G|D).

(c) Devika Subramanian, 2009 35



i The Bayesian approach

Marginal

I:)I\Iet;/vo_rk L Likelihood
5 osterior V Y

P(G | D) <« P(D| &6)P(&)

Prior over
Networks

Key idea: Use A(G/D) to evaluate a network
given a particular data set.

(c) Devika Subramanian, 2009



i Learning network structure

* The structure (G) learning problem is NP-
hard => heuristic search for best model
must be applied, generally bring out a
locally optimal network.

» It turns out, that richer structures give

higher likelihood P(D|G) to the data (adding
an edge to the graph is always preferable).

(c) Devika Subramanian, 2009 37



i Learning structure

y 5 A > B>
> 0 et

« If we add B to Parents(C) , we have more parameters
to fit > more freedom =2

* But we prefer simp/er (more explanatory) networks
(Occam's razorl)

* Therefore, practical scores of Bayesian Networks
compensate for the likelihood improvement by
imposing a penalty on complex networks.

(c) Devika Subramanian, 2009 38



i Local search

We change one edge and evaluate the gains
made by this change

Initial structure 6 Neighboring structures G
A—.B A—. B A—. B
¢ C C

(c) Devika Subramanian, 2009 39



i Search algorithm recipe

.. = Start with a random graph 6.
Evaluate its likelihood wrt D, P(G|D).

= Until little improvement in likelihood

= Perturb structure G by adding, deleting
or reversing edge

= Accept change if likelihood improves.

— = End

Randomized restarts

(c) Devika Subramanian, 2009 40




i Difficulty #1

= We do not have enough data to
uniquely identify a high-scoring
network.

= Exponentially many networks with the
same P(G|data) scorel
= Solution: generate many high-scoring
networks and extract common
features.

(c) Devika Subramanian, 2009
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i Evaluating networks

P(6|D)

1 I
S

Look for features common to many models

(c) Devika Subramanian, 2009
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i Difficulty #2

= What space of graph perturbations to
consider?

= Solution: sparse candidate algorithm
(Friedman 1999)

= Limit potential parents to k most correlated
variables.

(c) Devika Subramanian, 2009 43



Estimating statistical
i confidence in features

= To what extent does the data support
a given feature?

= An effective and relatively simple
approach for estimating confidence is
the bootstrap method.

(c) Devika Subramanian, 2009
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i The bootstrap method

= For/=1, ... m

= Re-sample with replacement Ninstances from D.
Denote by D, the resulting dataset.

= Apply the learning procedure on D, to induce a
network structure 6.

= For each feature 7 of interest calculate
conf(f)="1 > £(G)

= where (&) is1if fisa featurein &, and O
otherwise.

(c) Devika Subramanian, 2009 45



i Bootstrap illustrated

C(f) is the confidence

ae
856((\9\
<

in a feature.

N

resample

C(F) - %il{f )

DD~
Ly B X
>

(c) Devika Subramanian, 2009



Improving statistical
significance

Sparse Data
= Small humber of samples

= "Flat posterior” -- many networks fit the
data.

Solution

= estimate confidence in network features

= E.g., two types of features

= Markov neighbors: X directly interacts with ¥
(have mutual edge or a mutual child)

= Order relations: Xis an ancestor of Y
(c) Devika Subramanian, 2009 47



T-Lymphocyte Data (Sachs 2005)

I
[Condi’rions (96 well format) } [12 Color Flow Cytometry }

perla‘rion a

erturbation b

4 Datasets )
of cells
- condition a’
- condition b’
U condition... 'n’/

= Primary human T-Cells = 9 phosphoproteins, 2

= 9 conditions phospolipids
= (6 Specific interventions) = 600 cells per condition

= 5400 data-points
From Sachs 2005 (c) Devika Subramanian, 2009 48



i Using correlations

FD—FD
5 PN

R A

~‘ ' X "» < v ‘
4! DRSS RKTA
S Y= ‘!‘Y’%’

V’ %

</
va ~l

Fr'om SGChS 2005 (c) Devika Subramanian, 2009

O Phospho-Proteins

OPhospho-Lipids
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Statistical Dependencies
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But, how can statistical dependencies
determine directionality?

SClChS 2005 (c) Devika Subramanian, 2009 50




e Power of Interventions
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Dismissing Edges

Phospho B
Phospho C

Sachs 2005

3 8 8 3

I

Edges A->B and B->C explain
dependence of A and C
dismissing the edge
between them

(c) Devika Subramanian, 2009
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Phospho D

O

Context Specificity

= B and D seem unrelated

* Eishish [ 4 Relationship is revealed
L . by considering

A et '..-.--.-" e simultaneous

: L measurement of E

,,“-‘-n;%,}ﬁ-'*w"" ,'-:_. = Demonstrates the need

. R L for simultaneous

eiie -fv}-;s:{u.::;.; *4--;,.'5:;«;' A T measurements of

S5 *’%ﬁ;ﬁf sy T variables

BTN e T
s -:_\ %..,. tEonyi oS .

;i,,‘.'v'}-,f "é,, SRR = Pairwise computational

10 20 30 40‘“. 50 .. .SIO 76 BIO 96 analysis (e.g.
Phospho B correlations)
insufficient

200
Sachs 5 (c) Devika Subramanian, 2009 53



Indirect Edges

Phospho C

What would happen if B was not measured?

Sachs 2005 (c) Devika Subramanian, 2009
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~Summary

Conditions (96 well format) } [Mul‘riparame‘rer Flow Cy’rome’rr'y}
pe

ation a
perturbation b

4 Datasets )
of cells
- condition a’
- condition b’

. ~condition... 'n’j

perturbation n

/" Influence
diagram Bayesian
of - Network
measured Analysis

\_variables
SC(ChS 2005 (c) Devika Subramanian, 2009 55



Inferred Network

O Phospho-Proteins
O Phospho-Lipids
(O Perturbed in data

Sachs 2005 (c) Devika Subramanian, 2009 56



How good is the learned network?
( Phospho-Proteins

i @ O Phospho-Lipids
(O Perturbed in data

R i

Sachs 2005

FRURS

(c) Devika Subramanian, 2009 57



The need for cytometry data

= Direct phosphorylation:

Difficult to detect using other forms of
high-throughput data:

-Protein-protein interaction data

-Microarrays

Sachs 2005 (c) Devika Subramanian, 2009
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How good is the learned network?
( Phospho-Proteins

i @ O Phospho-Lipids
(O Perturbed in data

R i

Sachs 2005

ERURS

Indirect Signaling

(c) Devika Subramanian, 2009 59



Ability to handle missing nodes

= Indirect signaling

@@

Not me-asured

Indirect connections can be found even when the
intermediate molecule(s) are not measured

200
Sachs 5 (c) Devika Subramanian, 2009 60



i Indirect signaling

s Is this a mistake?

= The real picture

GGt (O

s Phospho-protein specific

= More than one E)a‘rhway of influence
(c) Devika Subramanian, 2009
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How good is the learned network?
( Phospho-Proteins
i @ O Phospho-Lipids
(O Perturbed in data
@ \ —E xpected Pathway

P o® j
€44/42

Crs
l | « 15/17 Classic
D &

Sachs 2005 (c) Devika Subramanian, 2009 62



How good IS the learned network?

( Phospho-Proteins
O Phospho-Lipids

D Perturbed in data

————~Expected Pathway
Reported

Reversed

= = = Missed

s 15/17 Classic

» 17/17
Reported

Sachs 2005 (c) Devika Subramanian, 2009 - 3 Mlssed 63




iPredicTion

!
1
!
!
1
1
1
1
!
1
1
!
1
1

Sachs 2005

= Erk influence on Akt
previously reported in
colon cancer cell lines

Predictions:
= Erkl/2 influences Akt

= While correlated, Erkl/2
does not influence PKA

(c) Devika Subramanian, 2009 64



Validation

rk1l/Erk2
s Select transfected cells

s Measure Akt and PKA

Sachs 2005

P=9.4e5

l

10°

10t

P-Akt

102 10°

10*

control, stimulated

Erkl siRNA, stimulated

P=0.28

10°

10t

(c) Devika Subr'amaniar'-b ZIQWA
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i Summary

= Proof of principle: Automated reconstruction
of signaling pathway in human cells

= Advantages:
= In-vivo
= Directed edges (causality)
= Detects direct and in-direct influences
= Single cell
= Choose sub-populations of interest

= Disadvantage:

= Static, cells fixed and stained

= a-cyclic Sachs et al, Science 2005
(c) Devika Subramanian, 2009 66



Spectrum of modeling tools in
ystems biology

L —— T

_)Experimental o Bayesian

Clustering <
D.Iata PC A, / PLS Netwlforks

d[R
2 ﬂ R) = k(LR]
\ ~ K [RI[L]
=

q

7
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v

¥
O
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SVMs
(c) Devika Subramanian, 2009 67



