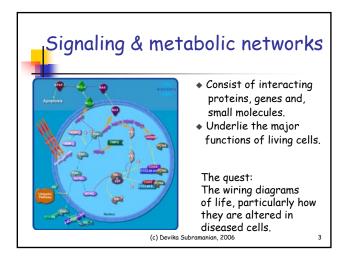
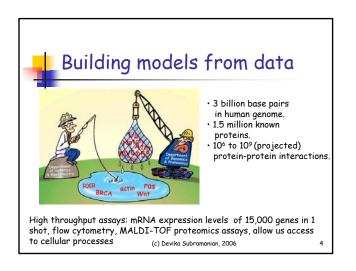


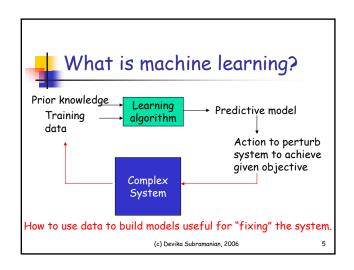
Module design inspiration * Designering how a mere 107 nucleation

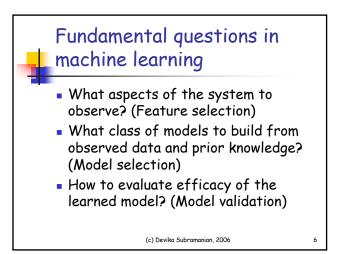
- "....Deciphering how a mere 107 nucleotides result in a yeast cell, let alone how 3 x 109 nucleotides result in a human - cannot begin until the genes have been annotated. This step includes figuring out the proteins these genes encode and what they do for a living. But understanding how all of these proteins collaborate to carry out cellular processes is the real enterprise at hand."
 - ------ Stanley Fields (Science: Feb 16 2001: 1221-1224)

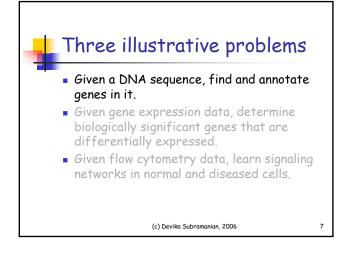
(c) Devika Subramanian, 2006

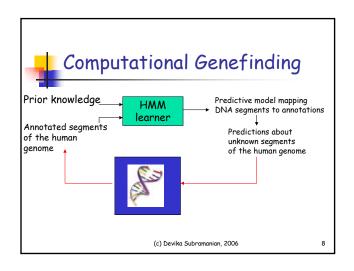


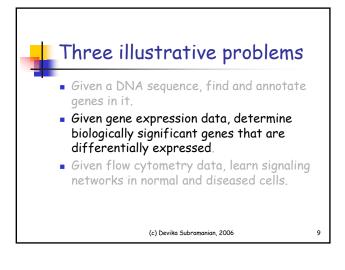


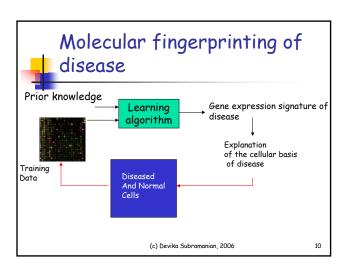


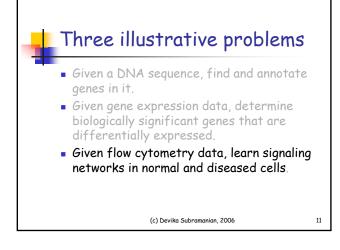


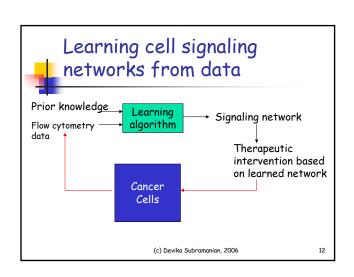












Three statistical learning algorithms

- Hidden Markov Models and variants (Conditional Random Fields).
- Naïve Bayes classifiers and support vector machines.
- Bayesian network learning: parameter and structure learning.

(c) Devika Subramanian, 2006

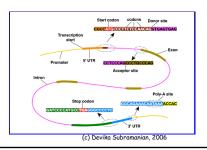
Module objectives

- Learn to model heterogeneous biological data and choose appropriate statistical machine learning algorithms.
- Understand the basics of supervised and sequential machine learning algorithms with particular focus on hidden markov models, naïve Bayes classifiers, kernel-based methods and Bayesian networks.
- Apply these techniques in the context of real data (human chromosome 22, prostate cancer gene expression data, flow cytometry data from T-cell signaling).

(c) Devika Subramanian, 2006

Computational gene finding

Gene finding in eukaryotic DNA

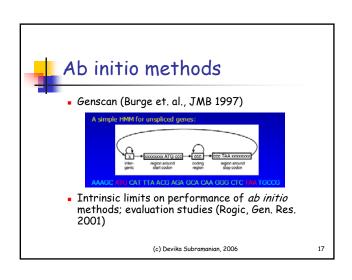


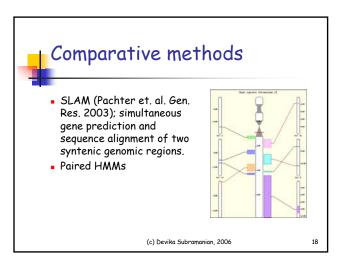
15

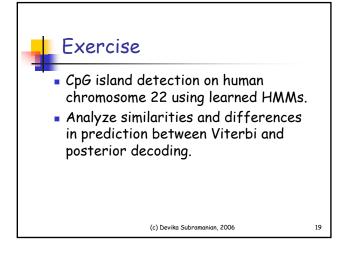
Mathematical model

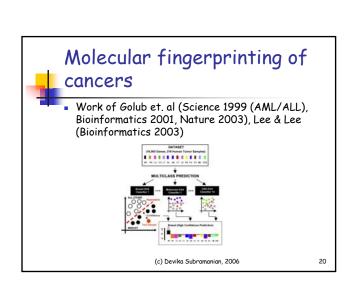
- Hidden Markov models
 - Structure of HMMs
 - Viterbi algorithm for annotation
 - Baum-Welch (EM) algorithm for learning models
 - Extensions: pair HMMs

(c) Devika Subramanian, 2006









Mathematical model

- Naïve Bayes classifiers
 - Ensemble methods: boosting and bagging
- Support vector machines (SVM)
 - Maximum margin separating hyperplane
 - Linear SVMs and soft margin hyperplanes
 - Non-linear SVMs and the kernel trick

(c) Devika Subramanian, 2006

21

Exercise

- From Singh prostate cancer data, determine which genes are differentially expressed using Naïve Bayes and SVM classifiers.
- Experiment with various feature selection techniques, compare predictions against the latest theories of compromised cellular processes in prostate cancer (Science 2004).

(c) Devika Subramanian, 2006

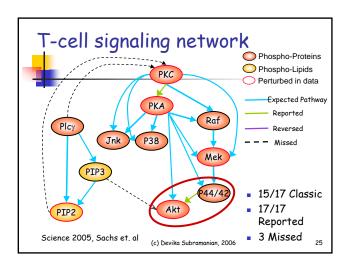
22

Learning networks from data Conditions (96 well format) Multiparameter Flow Cytometry perturbation b Datasets condition 'a' · condition 'b' · condition...'n' perturbation n Influence Bayesian diagram of Network measured variables Analysis 23

Mathematical model

- Probabilistic models : bayesian network representations of signaling networks.
- The sparse candidate algorithm for learning Bayesian networks from highthroughput data.

(c) Devika Subramanian, 2006



Summary

- How to use the underlying biology to constrain model selection and feature selection.
- How to choose and adapt machine learning algorithms for biological problems.
- How to design learning protocols to deal with incomplete, noisy data.
- How to interpret the results of machine learning algorithms.

(c) Devika Subramanian, 2006