

- The average gene consists of 3000 bases, but sizes vary greatly, with the largest known human gene being dystrophin at 2.4 million bases.

More facts

- Genes appear to be concentrated in random areas along the genome, with vast expanses of non-coding DNA between.
- About 2% of the genome encodes instructions for the synthesis of proteins.
- We do not know the function of more than 50% of the discovered genes.

More facts

- The human genome sequence is almost (99.9\%) exactly the same in all people. There are about 3 million locations where single-base DNA differences occur in http://www.dnai.org/index.htm humans (Single Nucleotide Polymorphisms or SNPs).
- Over 40% of the predicted human proteins share similarity with fruit-fly or worm proteins.

Genome sizes		
Organism	Genome Size (Bases)	Estimated Genes
Human (Homo sapiens)	3 billion	30,000
Laboratory mouse (M. musculus)	2.6 billion	30,000
Mustard weed (A. thaliana)	100 million	25,000
Roundworm (C. elegans)	97 million	19,000
Fruit fly (D. melanogaster)	137 million	13,000
Yeast (S. cerevisiae)	12.1 million	6,000
Bacterium (E. coll)	4.6 million	3,200
Human immunodeficiency virus (HIV)	9700	9

Codons

- 3 consecutive DNA bases code for an amino acid. There are 64 possible codons, but only 20 amino acids (some amino acids have multiple codon representations).
- Four special codons: start codon (ATG) and three stop codons (TAG, TGA, TAA). They indicate the start and end of translation regions.

Transcription

- When a gene is "expressed" the sequence of nucleotides in the DNA is used to determine the sequence of amino acids in a protein in a two step process.
- First, the enzyme RNA polymerase uses one strand of the DNA as a template to synthesize a complementary strand of messenger RNA (mRNA) in a process called transcription. RNA is identical to DNA except that in RNA T is replaced with U (for uracil). Also, unlike DNA, RNA usually exists as a single stranded molecule.

Splicing and Translation

- In eukaryotes, after a gene is transcribed the introns are removed from the mRNA and the adjacent exons are spliced together in the nucleus prior to translation outside the nucleus.
- After the mRNA for a particular gene is made it is used as a template with which ribosomes synthesize the protein in a process called translation.

Finding genes in prokaryotes

- Prokaryotes are single-celled organisms without a nucleus (e.g., bacteria).
- Few introns in prokayotic cells. Over 70% of H . influenzae genome codes for proteins.
- No introns in coding region.

Two problems

- Given a short DNA sequence, does it come from a CpG island or not?
\rightleftharpoons Is this part of a CpG island or not?
- How to find the CpG islands in a long sequence?

Markov processes: a quick intro

- We are interested in predicting weather, which can be either sunny or rainy.
- The weather on a given day is dependent only on the weather on the previous day.

$$
P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)=P\left(w_{t} \mid w_{t-1}\right)
$$

This is the Markov property.

Markov process example

- We have knowledge of the transition probabilities between the various states of the weather: $P\left(s, s^{\prime}\right)$.
matrix sum to 1

Rows of the transition

- We know the initial probabilities of s and r.

Generating weather sequences

- Let the probabilities of weather on day 1 be [0.5 0.5]. We flip a fair coin, and get heads, and obtain sunny to be our weather for day 1.
- Now we consult our transition matrix and find that $P(w \mid s)=[0.90 .1]$. So we flip a biased coin and obtain heads again, so weather on day 2 is also summy.
- We repeat this process, flipping coins biased by the probability $P\left(w_{+} \mid W_{t-1}\right)$ to get a sequence drawn from the s,r alphabet.

Prediction

- Suppose day 1 is rainy. We will represent this as a vector of probabilities over the three values.

$$
\pi(1)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] ;
$$

- How do we predict the weather for day 2 given pi(1) and the transition probabilities P?
- From P, we can see that the probability of day 2 being sunny is .5 , and for being rainy is 0.5

$$
\pi(1) * P=\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] ;
$$

Which weather pattern is more likely?

- Given a transition model
s
$\boldsymbol{s}\left[\begin{array}{cc}0.9 & 0.1 \\ 0.5 & 0.5\end{array}\right]$
- And an initial state distribution: $\left.\begin{array}{ll}0.5 & 0.5\end{array}\right]$
- And two sequences: rrrrrrs and ssssssr
- Which is more likely, given the model?

