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Outline (3 lectures)
The biological context
Markov models and Hidden Markov 
models
Ab-initio methods for gene finding
Comparative methods for gene finding
Evaluating gene finding programs

Lec 1

Lec 2

Lec 3
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The biological context
Introduction to the human genome 
and genes
The central dogma: transcription and 
translation
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Facts about the human genome
The human genome contains 3 billion 
chemical nucleotide bases (A, C, T, and G). 
About 30,000 genes are estimated to be in 
the human genome. Chromosome 1 (the 
largest human chromosome) has the most 
genes (2968), and the Y chromosome has 
the fewest (231).
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More facts
The average gene consists of 3000 bases, 
but sizes vary greatly, with the largest 
known human gene being dystrophin at 2.4 
million bases.
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More facts
Genes appear to be concentrated in random 
areas along the genome, with vast expanses 
of non-coding DNA between. 
About 2% of the genome encodes 
instructions for the synthesis of proteins.
We do not know the function of more than 
50% of the discovered genes. 
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More facts
The human genome sequence is almost 
(99.9%) exactly the same in all people. 
There are about 3 million locations where 
single-base DNA differences occur in 
humans (Single Nucleotide Polymorphisms 
or SNPs).
Over 40% of the predicted human proteins 
share similarity with fruit-fly or worm 
proteins.
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A great site to learn more

http://www.dnai.org/index.htm
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Genome sizes 
Organism Genome Size (Bases) Estimated 

Genes

Human (Homo sapiens) 3 billion 30,000
Laboratory mouse (M. musculus) 2.6 billion 30,000
Mustard weed (A. thaliana) 100 million 25,000
Roundworm (C. elegans) 97 million 19,000
Fruit fly (D. melanogaster) 137 million 13,000
Yeast (S. cerevisiae) 12.1 million 6,000
Bacterium (E. coli) 4.6 million 3,200
Human immunodeficiency virus (HIV) 9700 9
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Codons
3 consecutive DNA bases code for an amino 
acid. There are 64 possible codons, but 
only 20 amino acids (some amino acids have 
multiple codon representations).
Four special codons: start codon (ATG) and 
three stop codons (TAG, TGA, TAA). They 
indicate the start and end of translation 
regions.
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The central dogma

DNA mRNA proteins

mRNA produced
by transciption
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Transcription
When a gene is "expressed" the sequence of 
nucleotides in the DNA is used to determine the 
sequence of amino acids in a protein in a two step 
process.
First, the enzyme RNA polymerase uses one 
strand of the DNA as a template to synthesize a 
complementary strand of messenger RNA (mRNA) 
in a process called transcription. RNA is identical 
to DNA except that in RNA T is replaced with U 
(for uracil). Also, unlike DNA, RNA usually exists 
as a single stranded molecule.
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Splicing and Translation
In eukaryotes, after a gene is transcribed the
introns are removed from the mRNA and the 
adjacent exons are spliced together in the nucleus 
prior to translation outside the nucleus.
After the mRNA for a particular gene is made it is 
used as a template with which ribosomes
synthesize the protein in a process called 
translation.
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The Biological Model
Eukaryotic Gene Structure
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How genes are validated
Genomic 

DNA

ESTs

Full-length 
mRNA

Protein

cDNA - single-stranded DNA complementary to an RNA, 
synthesized from it by reverse transcription

full-length mRNAs (GenBank RefSeq, ~16000 human sequences)
ESTs – Expressed Sequence Tags 

relatively short, 500 bp long on average
span one or more exons 
large data sets required (GenBank dbEST – 4.3 M human sequences)
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Signals

CpG rich region
TATA box Gene

DNA coding 
strand

Exon 1 Exon 2 primary 
transcript

AAUAAAAAUAAA
(A)n(A)n

GTGT AGAG

ATGATG

Translation start codon

Polyadenylation site
Splice signals

Upstream regulatory signals (TATA boxes)
Translation start codon (ATG) 
Translation stop codon  (e.g., TAA)
Polyadenylation signal (~AATAAA)
Splice recognition signals (e.g., GT-AG, branch 

point)
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Computational gene finding
Gene finding in prokaryotes
Gene finding in eukaryotes

Ab initio
Comparative
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Finding genes in prokaryotes
Prokaryotes are single-celled 
organisms without a nucleus (e.g., 
bacteria).
Few introns in prokayotic cells. Over 
70% of H. influenzae genome codes 
for proteins.
No introns in coding region.

gene1                gene2                       gene3
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Finding genes in prokaryotes
Main idea: if bases were drawn uniformly 
at random, then a stop codon is expected 
once every 64/3 (about 21) bases. Since 
coding regions are terminated by stop 
codons, a simple technique to find genes is 
to look for long stretches of bases without 
a stop codon. Once a stop codon is found, 
we work backward to find the start codon 
corresponding to the gene.
Main problems: misses short genes, 
overlapping ORFs.
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Computational gene finding

Gene finding in eukaryotic DNA
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Ab initio methods
Use information embedded in the genomic 
sequence exclusively to predict the gene 
structure.  
Find structure G representing gene boundaries + 
internal gene structure which maximizes the 
probability P(G|genomic sequence).
Hidden Markov models are the predominant 
generative method for modeling the problem.
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Ab-initio methods
Advantages

Intuitive, natural modeling
Prediction of ‘novel’ genes, i.e., with no a priori 
known cDNA or protein evidence

Caveats
Not effective in detecting alternatively spliced 
forms, interleaved or overlapping genes
Difficulties with gene boundary identification
Potentially large number of false positives with 
over-fitting
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A simple example: CpG
Islands

CpG nucleotides in the genome are frequently 
methylated. (Write CpG not to confuse with CG 
base pair)

C → methyl-C → T
Methylation often suppressed around genes, 

promoters→ CpG islands
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Example: CpG Islands

In CpG islands,
CG is more frequent than in the rest of the 
genome
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Two problems

Given a short DNA sequence, does it 
come from a CpG island or not?

How to find the CpG islands in a long 
sequence?

Is this part of a CpG island or not?
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Generative models

Model Model

ACTGACCT……… TCGAGCTTA………

Models generate sequences of strings in the A,T,C,G
alphabet. Model parameters are tuned to reflect
characteristics of CpG and non CpG islands.
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Markov processes: a quick intro
We are interested in predicting weather, 
which can be either sunny or rainy.
The weather on a given day is dependent 
only on the weather on the previous day.

)|(),...,|( 111 −− = tttt wwPwwwP

This is the Markov property.

(c) Devika Subramanian, 2006 28

Markov process example
We have knowledge of the transition 
probabilities between the various states of 
the weather: P(s,s’).

We know the initial probabilities of s and r. 

⎥
⎦

⎤
⎢
⎣

⎡
 0.5   0.5
 0.1   9.0s

s      r

r
Rows of the transition
matrix sum to 1.

s r
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Generating weather 
sequences

Let the probabilities of weather on day 1 
be [0.5  0.5]. We flip a fair coin, and get 
heads, and obtain sunny to be our weather 
for day 1.
Now we consult our transition matrix and 
find that P(w|s) = [0.9 0.1]. So we flip a 
biased coin and obtain heads again, so 
weather on day 2 is also summy.
We repeat this process, flipping coins 
biased by the probability P(wt|wt-1) to get a  
sequence drawn from the s,r alphabet.
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Prediction
Suppose day 1 is rainy. We will represent this as a 
vector of probabilities over the three values.

How do we predict the weather for day 2 given 
pi(1) and the transition probabilities P?
From P, we can see that the probability of day 2 
being sunny is .5, and for being rainy is 0.5

1];  0[)1( =π

0.5];  5.0[*)1( =Pπ
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Probability of a sequence
What is the probability of observing 
the sequence “rrrrrrs”?

7
1

7..2

)5.0()|()(                        
)|()|()|()|()|()|()()(

==

==

−
=
∏ t
t

t xxPr
rsPrrPrrPrrPrrPrrPrrrrrrrsXP

π

π

r r sr r r r
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Which weather pattern is 
more likely?

Given a transition model

And an initial state distribution: [0.5   0.5]
And two sequences: rrrrrrs and ssssssr
Which is more likely, given the model?

⎥
⎦

⎤
⎢
⎣

⎡
 0.5   0.5
 0.1   9.0s

s      r

r
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Comparing likelihoods

1.0*)9.0(*5.0)|()]|()[()|(
)5.0()|()]|()[()|(

55

75

===

===

srPssPsModelssssssrXP
rsPrrPrModelrrrrrrsXP

π

π

log
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Markov models
States: S = {s1,…,sN}, N states
Transition probability: 

aij = P(Xt+1=sj|Xt=si), i,j in [1..N]
Initial state probability

pii = P(X1=si), i in [1..N]

Model generates sequences of states from S, and 
we can compute how likely a sequence is given the
model.
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Markov Models for CpG
islands

A T

GC
aGTaAC

aGC

aAT

TGCA+

.182.384.355.079T

.125.375.339.161G

.188.274.368.171C

.120.426.274.180A
TGCA-

.292.292.239.177T

.208.298.246.248G

.302.078.298.322C

.210.285.205.300A

A state for each of the four letters A,C, G, and T in the DNA alphabet

∑ +

+
+ =

t' st'

st
st

c
ca

From a set of known
CpG islands, and non CpG
islands, estimate the 
transition probabilities
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Using the model
To use these models for discrimination, calculate 
the log-odds ratio.

−

+

=
−

−∑=−
+

=
ii

ii
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xxL

i a

a
)P(x|
)P(x|S(x)

1

1

1
log

model
modellog
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Histogram of log-odds 
scores

-0.4    -0.3    -0.2    -0.1    0    0.1    0.2    0.3    
0.4

0

5
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CpG
islands

Non-
CpG

Q1: Given a short sequence x, does it come from CpG island (Yes-No question)?
• S(x)

Q2: Given a long sequence x, how do we find CpG islands in it (Where question)?
• Calculate the log-odds score for a window of, say, 100 nucleotides around every 
nucleotide, plot it, and predict CpG islands as ones w/ positive values
• Drawbacks: Window size


