

Computational gene finding

Devika Subramanian Comp 470

Outline (3 lectures)

The biological context

Lec 1 Markov models and Hidden Markov models

Lec 2 - Ab-initio methods for gene finding

Comparative methods for gene finding

Lec 3 - Evaluating gene finding programs

(c) Devika Subramanian, 2006

The biological context

- Introduction to the human genome and genes
- The central dogma: transcription and translation

(c) Devika Subramanian, 2006

Facts about the human genome

- The human genome contains 3 billion chemical nucleotide bases (A, C, T, and G).
- About 30,000 genes are estimated to be in the human genome. Chromosome 1 (the largest human chromosome) has the most genes (2968), and the Y chromosome has the fewest (231).

(c) Devika Subramanian, 2006

More facts

 The average gene consists of 3000 bases, but sizes vary greatly, with the largest known human gene being dystrophin at 2.4 million bases.

(c) Devika Subramanian, 2006

More facts

- Genes appear to be concentrated in random areas along the genome, with vast expanses of non-coding DNA between.
- About 2% of the genome encodes instructions for the synthesis of proteins.
- We do not know the function of more than 50% of the discovered genes.

(c) Devika Subramanian, 2006

More facts

- The human genome sequence is almost (99.9%) exactly the same in all people.
 There are about 3 million locations where single-base DNA differences occur in humans (Single Nucleotide Polymorphisms or SNPs).
- Over 40% of the predicted human proteins share similarity with fruit-fly or worm proteins.

(c) Devika Subramanian, 2006

A great site to learn more

http://www.dnai.org/index.htm

(c) Devika Subramanian, 2006

Genome sizes

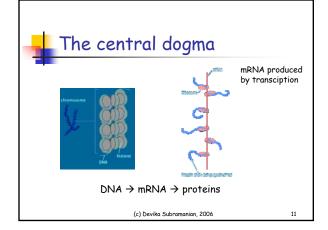
Organism	Genome Size (Bases)	Estimated Genes
Human (<i>Homo sapiens</i>)	3 billion	30,000
Laboratory mouse (M. musculus)	2.6 billion	30,000
Mustard weed (<i>A. thaliana</i>)	100 million	25,000
Roundworm (<i>C. elegans</i>)	97 million	19,000
Fruit fly (<i>D. melanogaster</i>)	137 million	13,000
Yeast (<i>5. cerevisiae</i>)	12.1 million	6,000
Bacterium (<i>E. coli</i>)	4.6 million	3,200
Human immunodeficiency virus (HIV)	9700	9

Codons

- 3 consecutive DNA bases code for an amino acid. There are 64 possible codons, but only 20 amino acids (some amino acids have multiple codon representations).
- Four special codons: start codon (ATG) and three stop codons (TAG, TGA, TAA). They indicate the start and end of translation regions.

(c) Devika Subramanian, 2006

10

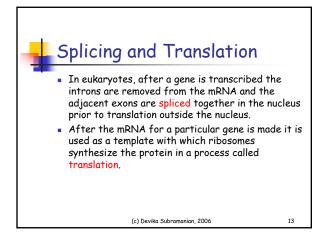


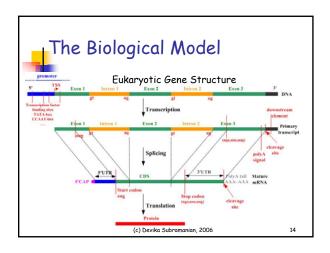
Transcription

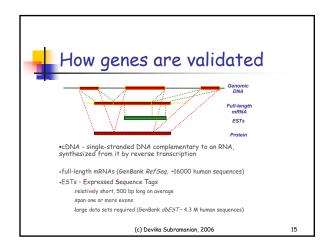
- When a gene is "expressed" the sequence of nucleotides in the DNA is used to determine the sequence of amino acids in a protein in a two step process.
- First, the enzyme RNA polymerase uses one strand of the DNA as a template to synthesize a complementary strand of messenger RNA (mRNA) in a process called transcription. RNA is identical to DNA except that in RNA T is replaced with U (for uracil). Also, unlike DNA, RNA usually exists as a single stranded molecule.

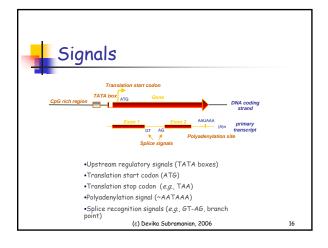
(c) Devika Subramanian, 2006

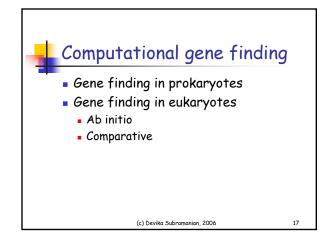
12

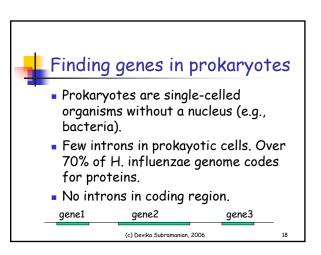








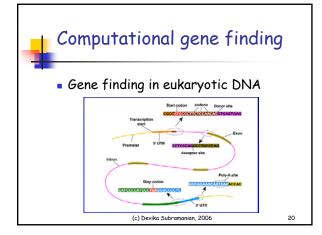




Finding genes in prokaryotes

- Main idea: if bases were drawn uniformly at random, then a stop codon is expected once every 64/3 (about 21) bases. Since coding regions are terminated by stop codons, a simple technique to find genes is to look for long stretches of bases without a stop codon. Once a stop codon is found, we work backward to find the start codon corresponding to the gene.
- Main problems: misses short genes, overlapping ORFs.

(c) Devika Subramanian, 2006



Ab initio methods

- Use information embedded in the genomic sequence exclusively to predict the gene structure.
- Find structure G representing gene boundaries + internal gene structure which maximizes the probability P(G|genomic sequence).
- Hidden Markov models are the predominant generative method for modeling the problem.

(c) Devika Subramanian, 2006

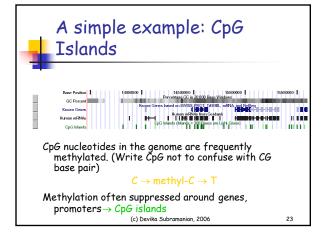
21

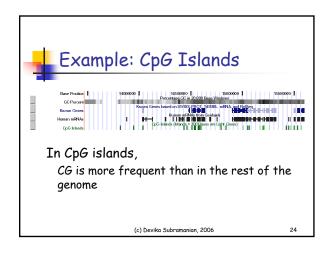
Ab-initio methods

- Advantages
 - Intuitive, natural modeling
 - Prediction of 'novel' genes, i.e., with no a priori known cDNA or protein evidence
- Caveats
 - Not effective in detecting alternatively spliced forms, interleaved or overlapping genes
 - Difficulties with gene boundary identification
 - Potentially large number of false positives with over-fitting

(c) Devika Subramanian, 2006

22





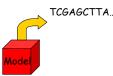
Two problems

- Given a short DNA sequence, does it come from a CpG island or not?
 - Is this part of a CpG island or not?
- How to find the CpG islands in a long sequence?

(c) Devika Subramanian, 2006

Generative models

ACTGACCT......



Models generate sequences of strings in the A,T,C,G alphabet. Model parameters are tuned to reflect characteristics of CpG and non CpG islands.

(c) Devika Subramanian, 2006

Markov processes: a quick intro

- We are interested in predicting weather, which can be either sunny or rainy.
- The weather on a given day is dependent only on the weather on the previous day.

$$P(w_t \mid w_{t-1},...,w_1) = P(w_t \mid w_{t-1})$$

This is the Markov property.

(c) Devika Subramanian, 2006

Markov process example

 We have knowledge of the transition probabilities between the various states of the weather: P(s,s').

Rows of the transition matrix sum to 1.

 $\begin{array}{ccc}
s & r \\
s & 0.9 & 0.1 \\
r & 0.5 & 0.5
\end{array}$

We know the initial probabilities of s and r.

(c) Devika Subramanian, 2006

2

Generating weather sequences

- Let the probabilities of weather on day 1 be [0.5 0.5]. We flip a fair coin, and get heads, and obtain sunny to be our weather for day 1.
- Now we consult our transition matrix and find that P(w|s) = [0.9 0.1]. So we flip a biased coin and obtain heads again, so weather on day 2 is also summy.
- We repeat this process, flipping coins biased by the probability P(w₊|w₊₋₁) to get a sequence drawn from the s,r alphabet.

(c) Devika Subramanian, 2006

27

Prediction

 Suppose day 1 is rainy. We will represent this as a vector of probabilities over the three values.

$$\pi(1) = [0 \ 1];$$

- How do we predict the weather for day 2 given pi(1) and the transition probabilities P?
- From P, we can see that the probability of day 2 being sunny is .5, and for being rainy is 0.5

$$\pi(1) * P = [0.5 \ 0.5];$$

(c) Devika Subramanian, 2006

30

Probability of a sequence

 What is the probability of observing the sequence "rrrrrrs"?

 $P(X = rrrrrs) = \pi(r)P(r|r)P(r|r)P(r|r)P(r|r)P(r|r)P(s|r)$ $= \pi(r) \prod P(x_t \mid x_{t-1}) = (0.5)^7$

(c) Devika Subramanian, 2006

Which weather pattern is more likely?

• Given a transition model

$$\begin{array}{ccc} & \mathbf{s} & \mathbf{r} \\ \mathbf{s} & \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix} \end{array}$$

- And an initial state distribution: [0.5 0.5]
- And two sequences: rrrrrrs and ssssssr
- Which is more likely, given the model?

(c) Devika Subramanian, 2006

Comparing likelihoods

 $P(X = rrrrrs \mid Model) = \pi(r)[P(r \mid r)]^{5}P(s \mid r) = (0.5)^{7}$ $P(X = sssssr \mid Model) = \pi(s)[P(s \mid s)]^{5}P(r \mid s) = 0.5*(0.9)^{5}*0.1$

(c) Devika Subramanian, 2006

Markov models

- States: $S = \{s_1, ..., s_N\}$, N states
- Transition probability:
 - $a_{ij} = P(X_{t+1} = s_i | X_t = s_i)$, i,j in [1..N]
- Initial state probability
 - pi_i = P(X₁=s_i), i in [1..N]

Model generates sequences of states from S, and we can compute how likely a sequence is given the model.

(c) Devika Subramanian, 2006

Markov Models for CpG islands

A state for each of the four letters A,C, G, and T in the DNA alphabet

From a set of known CpG islands, and non CpG islands, estimate the transition probabilities

35

+	Α	С	G	Т
Α	.180	.274	.426	.120
С	.171	.368	.274	.188
G	.161	.339	.375	.125
Т	.079	.355	.384	.182

	1	Α	С	G	Т
	Α	.300	.205	.285	.210
	С	.322	.298	.078	.302
	G	.248	.246	.298	.208
	Т	.177	.239	.292	.292

(c) Devika Subramanian, 2006

Using the model

To use these models for discrimination, calculate the log-odds ratio.

$$S(x) = \log \frac{P(x/\text{model} +)}{P(x/\text{model} -)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}}$$

(c) Devika Subramanian, 2006

