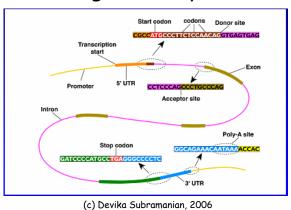


Computational gene finding

Gene finding in eukaryotic DNA



20

Ab initio methods

- Use information embedded in the genomic sequence exclusively to predict the gene structure.
- Find structure G representing gene boundaries + internal gene structure which maximizes the probability P(G|genomic sequence).
- Hidden Markov models are the predominant generative method for modeling the problem.

(c) Devika Subramanian, 2006

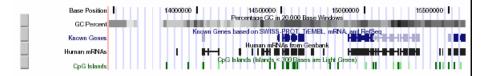
Ab-initio methods

- Advantages
 - Intuitive, natural modeling
 - Prediction of 'novel' genes, i.e., with no a priori known cDNA or protein evidence
- Caveats
 - Not effective in detecting alternatively spliced forms, interleaved or overlapping genes
 - Difficulties with gene boundary identification
 - Potentially large number of false positives with over-fitting

(c) Devika Subramanian, 2006

22

A simple example: CpG Islands

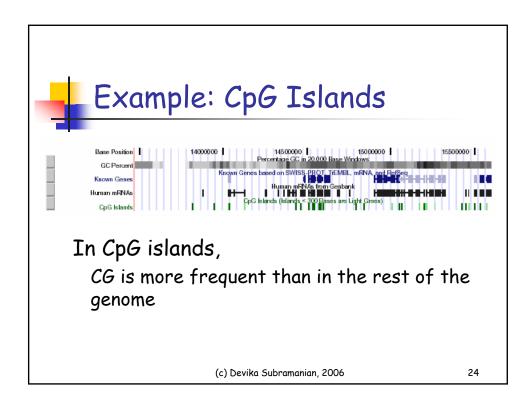


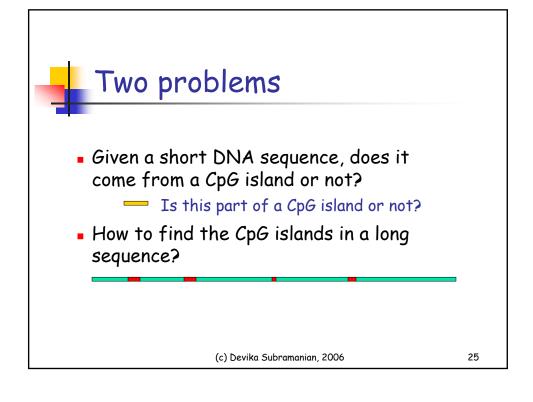
CpG nucleotides in the genome are frequently methylated. (Write CpG not to confuse with CG base pair)

 ${\it C} \to methyl\hbox{-}{\it C} \to T$

Methylation often suppressed around genes, promoters $\rightarrow \mathcal{C}p\mathcal{G}$ islands

(c) Devika Subramanian, 2006





Generative models

ACTGACCT......

TCGAGCTTA......

Models generate sequences of strings in the A, T, C, G alphabet. Model parameters are tuned to reflect characteristics of CpG and non CpG islands.

(c) Devika Subramanian, 2006

26

Markov processes: a quick intro

- We are interested in predicting weather, which can be either be sunny (s) or rainy (r).
- The weather on a given day depends only on the weather on the previous day.

$$P(w_t \mid w_{t-1},...,w_1) = P(w_t \mid w_{t-1})$$

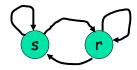
This is the Markov property.

(c) Devika Subramanian, 2006

Markov process example

 We have knowledge of the transition probabilities between sunny and rainy days.

Rows of the transition matrix sum to 1.



• We know the initial probabilities of s and r.

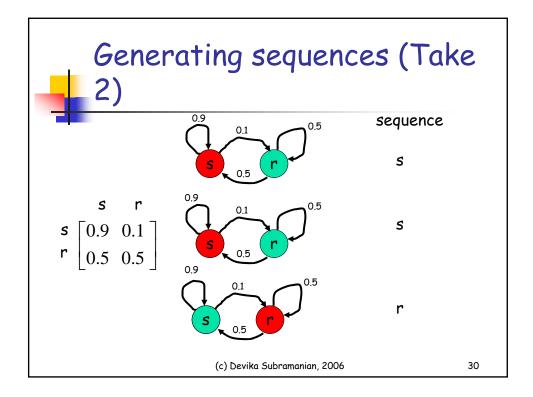
(c) Devika Subramanian, 2006

28

Generating weather sequences

- Let the probabilities of weather on the first day be [0.5 0.5]. Lets say we start with a sunny day.
- Now we consult our transition matrix and find that $P(w|s) = [0.9 \ 0.1]$. It is more likely that the next day will be sunny too.
- We repeat this process, flipping coins biased by the probability $P(w_t|w_{t-1})$ to get a sequence representing weather for a consecutive set of days.

(c) Devika Subramanian, 2006



Prediction

 Suppose day is rainy. We will represent this as a vector of probabilities over the two values.

$$\pi(1) = [0 \ 1];$$

- How do we predict weather on day 2 given pi(1) and the transition probabilities P?
- From P, we can see that the probability of day 2 being sunny is .5, and for being rainy is 0.5

$$\pi(1) * P = [0.5 \ 0.5];$$

(c) Devika Subramanian, 2006

Probability of a sequence

• What is the probability of observing the sequence "rrrrrrs"?

$$P(X = rrrrrs) = \pi(r)P(r \mid r)P(r \mid r)P(r \mid r)P(r \mid r)P(r \mid r)P(s \mid r)$$
$$= \pi(r) \prod_{t=2..7} P(x_t \mid x_{t-1}) = (0.5)^7$$

(c) Devika Subramanian, 2006

32

Which weather pattern is more likely?

• Given a transition model

$$\begin{array}{c|cccc} & s & r \\ s & 0.9 & 0.1 \\ r & 0.5 & 0.5 \end{array}$$

- And an initial state distribution: [0.5 0.5]
- And two sequences: rrrrrrs and ssssssr Which is more likely, given the model?

(c) Devika Subramanian, 2006

Comparing likelihoods

$$P(X = rrrrrs \mid Model) = \pi(r)[P(r \mid r)]^{5} P(s \mid r) = (0.5)^{7}$$

$$P(X = sssssr \mid Model) = \pi(s)[P(s \mid s)]^{5} P(r \mid s) = 0.5*(0.9)^{5}*0.1$$

(c) Devika Subramanian, 2006

34

Markov models (summary)

- States: $S = \{s_1, ..., s_N\}$, N states
- Transition probability:

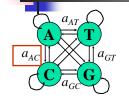
•
$$a_{ij} = P(X_{t+1} = s_i | X_t = s_i)$$
, i,j in [1..N]

- Initial state probability
 - $pi_i = P(X_1 = s_i)$, i in [1..N]

Model generates sequences of states from 5, and we can compute how likely a sequence is given the model.

(c) Devika Subramanian, 2006

Markov models for CpG islands



A state for each of the four letters A,C, G, and T in the DNA alphabet

$$a_{st}^+ = \frac{c_{st}^+}{\sum_{t'} c_{st'}^+}$$

From a set of known CpG islands, and non CpG islands, estimate the transition probabilities

+	A	С	G	٦
A	.180	.274	.426	.120
С	.171	.368	.274	.188
G	.161	.339	.375	.125
Т	.079	.355	.384	.182

-	A	С	G	T
Α	.300	.205	.285	.210
С	.322	.298	.078	.302
G	.248	.246	.298	.208
Т	.177	.239	.292	.292

(c) Devika Subramanian, 2006

26

Using the model

- To use the model for classification of a given sequence, calculate the log-odds ratio.
- Is the sequence more likely to come from a CpG island or a non-CpG region?

$$\begin{aligned} &P(x \mid CpG) > P(x \mid nonCpG) \\ &\frac{P(x \mid CpG)}{P(x \mid nonCpG)} > 1 \\ &\log \frac{P(x \mid CpG)}{P(x \mid nonCpG)} > 0 \end{aligned}$$

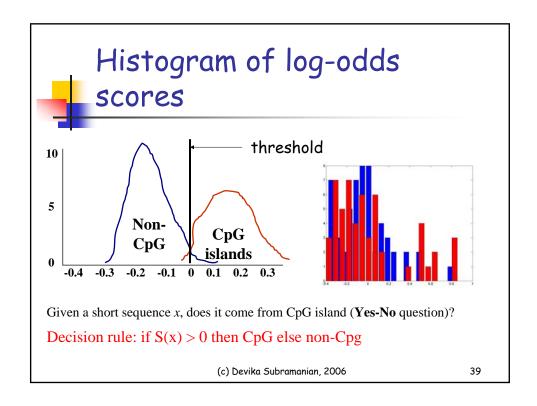
Log-odds ratio

(c) Devika Subramanian, 2006

The log-odds ratio

$$S(x) = \log \frac{P(x/CpG)}{P(x/nonCpG)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-}$$

(c) Devika Subramanian, 2006



How to locate CpG islands?

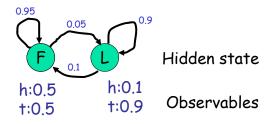
- Given a DNA sequence, find the CpG islands in it, if any.
- Approach: Calculate the log-odds score for a window of w nucleotides around every base in the sequence. Predict as CpG islands, those with a positive log-odds score.
- Problem: What should the size of the window w be? Predictions are sensitive to choice of w.

(c) Devika Subramanian, 2006

40

The occasionally dishonest casino

 A casino uses a fair coin most of the time, but occasionally they switch to a loaded coin. You can't see which coin they are using, just the results of the flips (heads and tails) are visible.



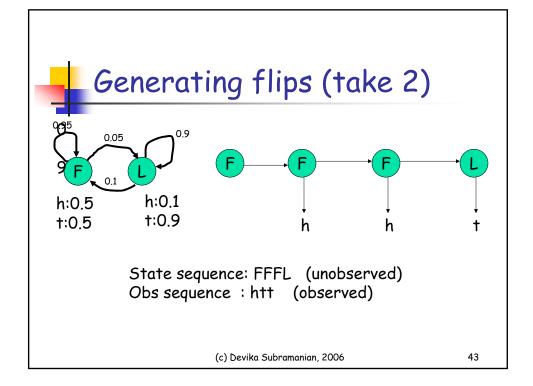
(c) Devika Subramanian, 2006

Generating coin flips

- Start in one of the states, F or L (i.e., pick a fair or loaded coin to start with) (initial probabilities).
- Move to the next state (F or L), based on the transition probabilities. Generate an h or t based on the emission probabilities of that state.
- Repeat above step.

(c) Devika Subramanian, 2006

42



Hidden Markov Models

- $S = \{s_1, ..., s_N\}$, N states
- $O = \{o_1, ..., o_M\}$, M observation symbols
- $a_{ij} = P(S_{t+1} = s_j | S_t = s_i)$, i,j in [1..N]; transition probabilities
- $b_i(k)=P(E_t=o_k|S_t=s_i)$, k in [1..M],i in [1..N]; emission probabilities
- pi_i = P(S₁=s_i), i in [1..N]; initial state probabilities

 $\lambda = (A,B,\pi)\,$ specifies the HMM model

(c) Devika Subramanian, 2006

44

Dishonest casino as an HMM

- N = 2, S={F,L}
- M=2, O = {h,t}
- A = F L

$$\begin{bmatrix}
 F & 0.95 & 0.05 \\
 L & 0.10 & 0.90
\end{bmatrix}$$

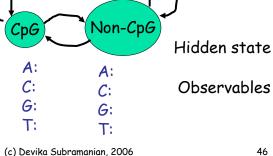
B=

 $\pi = [1 \ 0]$

(c) Devika Subramanian, 2006

A generative model for CpG islands

There are two hidden states: CpG and non-CpG. Each state is characterized by emission probabilities of the 4 bases. You can't see which state the model is, only the emitted bases are visible.



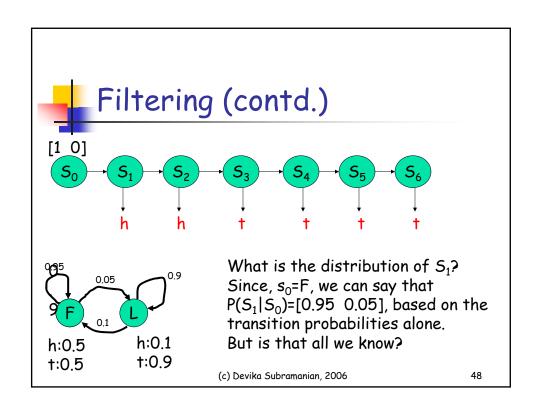
Filtering or the forward computation

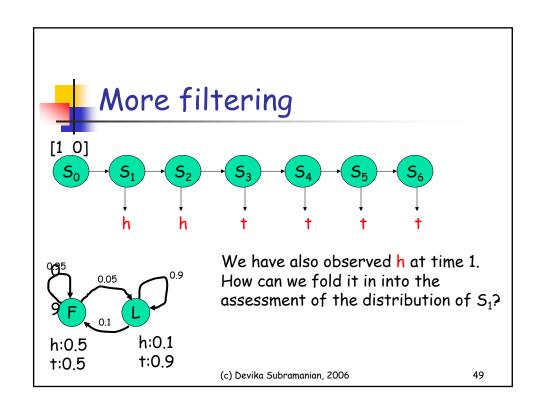
- Given an HMM model (A,B,pi), and an observation sequence o₁...o₊, can we find the most likely hidden state at time t, S₊?
 - $P(S_t|o_1...o_t)$: filtering

Observation sequence: hhtttt

What is the hidden state here (F or L)?

(c) Devika Subramanian, 2006





Filtering (contd.)

$$P(S_1 \mid o_1) = \frac{P(o_1 \mid S_1)P(S_1)}{P(o_1)}$$

$$P(S_1 = F \mid o_1 = h) = \alpha P(h \mid F)0.95 = \alpha(0.5)(0.95)$$

$$P(S_1 = L \mid o_1 = h) = \alpha P(h \mid L)0.05 = \alpha(0.1)(0.05)$$

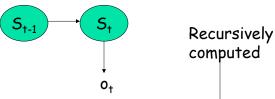
$$\alpha(0.5)(0.95) + \alpha(0.1)(0.05) = 1$$

Therefore, $P(S_1)=[0.99 \ 0.01]$

(c) Devika Subramanian, 2006

50

Filtering computation



$$P(S_t \mid o_t, o_1...o_{t-1}) = P(o_t \mid S_t) \sum_{s_{t-1}} P(S_t \mid s_{t-1}) P(s_{t-1} \mid o_1...o_{t-1})$$

(c) Devika Subramanian, 2006

Summary: filtering

Find $P(S_t | o_1,...,o_t) = cP(S_t, o_1,...,o_t)$.

Define $\alpha_t(i) = P(o_1, ..., o_t, S_t = s_i)$.

Initialize: $\alpha_0(i) = \pi_i$, $1 \le i \le n$

Recursion: $\alpha_{t+1}(j) = b_j(o_{t+1}) \sum_{i=1}^n \alpha_t(i) a_{ij}, \ 0 \le j \le n, 1 \le t \le T-1$

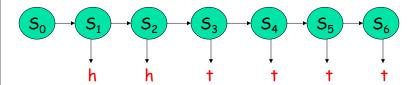
Termination : $\alpha_{\rm T}(i)$, $1 \le i \le n$

Time complexity O(n2T)

(c) Devika Subramanian, 2006

52

Smoothing/posterior decoding



Question: can we re-estimate the distribution at S_k where k < t, using information about the observed sequence upto time t?

That is, what is $P(S_k|o_1...o_t)$?

(c) Devika Subramanian, 2006

Backward computation

Backward computation

$$P(S_k | o_1,...,o_t) = cP(o_{k+1},...,o_t | S_k)P(S_k | o_1,...,o_k)$$

Forward computation

Define $\beta_k(i) = P(o_{k+1},...,o_t | S_k = s_i)$.

Initialize: $\beta_T(i) = 1$, $1 \le i \le N$.

Recursion: $\beta_k(i) = c \sum_{j=1}^{N} a_{ij} b_j(e_{k+1}) \beta_{k+1}(j), 1 \le i \le N, T-1 \le k \le 1$

Time complexity: O(n2T)

(c) Devika Subramanian, 2006

54

Posterior decoding

$$P(S_k = i | o_1,...,o_t) = c\beta_k(i)\alpha_k(i)$$

(c) Devika Subramanian, 2006

Full Decoding

- Given HMM model (A,B,pi), and an observation sequence o₁...o₊, can we find the most likely hidden state sequence s₁...s₊?
 - $argmax_{s_1...s_t} P(s_1...s_t | o_1...o_t)$

(c) Devika Subramanian, 2006

56

The Viterbi algorithm

$$\delta_t(i) = \max_{x_1,...,x_{t-1}} P(s_1,...,s_{t-1},S_t = i,o_1,...,o_t)$$

Initialize: $\delta_0(i) = \pi_i, 1 \le i \le n$

Recursion: $\delta_{t+1}(j) = \max_{i} \delta_{t}(i) a_{ij} b_{j}(e_{t+1}),$

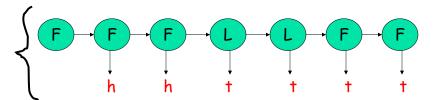
 $1 \le t \le T - 1, 1 \le j \le n$

Computational complexity = $O(Tn^2)$

(c) Devika Subramanian, 2006

Learning an HMM: case 1

 Given observation sequences, and the corresponding hidden state sequences, can we find the most likely model (A,B,pi) which generated it?



Training data

(c) Devika Subramanian, 2006

58

Parameter estimation

- Initial state distribution
 - Fraction of times state i is state 1 in training data
- Transition probabilities
 - a_{ij} = (number of transitions from i to j)/(number of transitions from i)
- Emission probabilities
 - b_k(i) = (number of times k is emitted in state
 i)/(number of times state i occurs)

(c) Devika Subramanian, 2006

Learning an HMM: case 2

• Given just the observation sequences, can we find the most likely model $\lambda = (A,B,pi)$ which generated it?

$$\underset{\lambda}{\operatorname{argmax}} P(o_1...o_t \mid \lambda)$$

Annotated training data is difficult to get; so we would like to derive model parameters from observable sequences.

(c) Devika Subramanian, 2006

60

The EM algorithm

- Guess a model λ
- 2. Use observation sequence to estimate transition probabilities, emission probabilities, and initial state probabilities.
- 3. Update model
- 4. Repeat 2 and 3 till no change in model

(c) Devika Subramanian, 2006

Re-estimating paraameters

• What is the probability of being in state i at time t and moving to state j, given the current model and the observation sequence O?

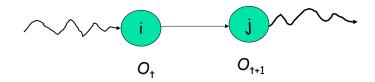
$$\xi_t(i, j) = P(S_t = i, S_{t+1} = j \mid O, \lambda)$$

(c) Devika Subramanian, 2006

62

Using forward and backward computation

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}$$



(c) Devika Subramanian, 2006

Re-estimating aii

 The transition probabilities a_{ij} can be re-estimated as follows

$$\hat{a}_{ij} = rac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j'=1}^{n} \xi_t(i,j')}$$

(c) Devika Subramanian, 2006

64

Initial state probabilities

$$\gamma_{t}(i) = \sum_{j=1}^{N} \xi_{t}(i,j) \qquad \begin{array}{l} \text{Expected number} \\ \text{of times in} \\ \text{state i} \end{array}$$

Initial state probabilities are simply $\gamma_1(i)$

(c) Devika Subramanian, 2006

Emission probabilities

 $\hat{b}_i(k) = \frac{\text{expected number of times in state i and observe symbol k}}{\text{expected number of times in state i}}$

$$\hat{b}_{i}(k) = \frac{\sum_{t=1}^{T} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{t}(i)}$$

(c) Devika Subramanian, 2006

66

The EM algorithm

- 1. Guess a model $\lambda = (a, b, \pi)$
- 2. Use observation sequence to estimate

$$\xi_t(i,j)$$
 and $\gamma_t(i)$

3. Use these estimates to recalculate

$$\lambda' = (a', b', \pi')$$

4. Repeat 2 and 3 till no change in model

(c) Devika Subramanian, 2006

How to use the CpG island HMM

- Given a DNA region x, the Viterbi algorithm predicts locations of CpG islands on it.
- Given a nucleotide x_i the Viterbi parse tells whether x_i is in a CpG island in the most likely sequence.
- Posterior Decoding can assign locally optimal predictions of CpG islands.
- A fully annotated training data set can be used to estimate the generating HMM.
- Even without annotations, we can use the EM procedure to derive model parameters.

(c) Devika Subramanian, 2006