How to design an HMM for a new problem

- Architecture/topology design:
- What are the states, observation symbols, and the topology of the state transition graph?
- Learning/Training:
- Fully annotated or partially annotated training datasets
- Parameter estimation by maximum likelihood or by EM
- Validation/Testing:
- Fully annotated testing datasets
- Performance evaluation (accuracy, specificity and sensitivity)

Hidden Semi-Markov models

- Each state is associated with an explicit duration model of the form: $P(|X|=L)$, where $|X|$ is the length of the hidden state sequence in state X.

Genscan's architecture (1)

- HMM states for exons and introns in three different phases, single exon, 5^{\prime} and 3' UTRs, promoter region, polyA site and intergenic region.
- Explicit length modeling of introns and exons.

Genscan model components

- Vector of initial probabilities π
- State Transition probability Matrix T
- Set of length distributions $f_{Q(i)}$ conditional on state
- Sequence generating model $P(s \mid q, d)$ conditional on state and length.

Isochore groups

Group	I	II	III	IV
C + G\% range	<43	$43-51$	$51-57$	>57
Number of genes	65	115	99	101
Est. proportion single-exon genes	0.16	0.19	0.23	0.16
Codelen: single-exon genes (bp)	1130	1251	1304	1137
Codelen: multi-exon genes (bp)	902	908	1118	1165
Introns per multi-exon gene	5.1	4.9	5.5	5.6
Mean intron length (bp)	2069	1086	801	518
Est. mean integenic length (bp)	83000	36000	5400	2600

(c) Devika Subramanian, 2006

Initial pro	bi	es		
	I	II	III	IV
Intergenic (N)	0.892	0.867	0.54	0.418
Intron (IO+, I1+,I2+, IO-, I1-, I2-)	0.095	0.103	0.338	0.388
5' Untranslated region ($\mathrm{F}+$, F -)	0.008	0.018	0.077	0.122
3' Untranslated region ($\mathrm{T}+$, T-)	0.005	0.011	0.045	0.072
All other probabilities set to zero. (c) Devika Subramanian, 2006				82

Exon and intron models

Models of Coding and Non-Coding DNA

Non-coding
 $P\left(o_{t} \mid o_{t-1} o_{t-2} O_{t-3} O_{t-4} o_{t-5}\right)$

Transition probabilities

- Sure transitions are assigned probability 1.
- The others are set according to maximum likelihood values in training data.

Inhomogenous Markov Chains

- In the Markov chain models we have considered so far, the probabilities do not depend on where we are in a given sequence
- In an inhomogeneous Markov model, we have different distributions at different positions in the sequence.

$$
a_{x_{11} \times 2}^{1} a_{x_{2 \times 3}}^{2} a_{x_{334}}^{3} a_{x_{4 \times 5}}^{1} a_{x_{55} 6}^{2}
$$

Length distribution for
 introns

- No introns < 65bp. After that geometric (exponential) distribution.
- Substantial difference between different $C+G$ groups.
- So, intron length is modeled as geometric distribution with different parameters of different $C+G$ groups.

Exon/intron/UTR model

- Exons -- inhomogeneous 3-periodic fifth order Markov model.
- Introns and intergenic regions homogeneous 5th order Markov model
- 5' and 3' UTRs - homogeneous 5th order Markov model

Genscan architecture (2)

- Weighted matrix and weighed arrays for acceptor splice site, polyA site and promoter region.
- Decision tree (maximal dependence decomposition) for donor sites.
- Different model parameters for regions with different GC content.

Weighted matrix

- Computed by measuring the frequency of every element of every position of the site (weight)

TACGAT		1	2	3		4	5	6
TATAAT	A	0	6	0	0	3	4	0
TATAAT	C	0	0	1	10	0	1	0
GATACT	G	1	0	0		3	0	0
TATGAT	T	5	0	5		0	1	6
TATGTT								

- Score for any putative site is the sum of the matrix values (converted in probabilities) for that sequence (log-likelihood score)

Promotor model

- Promoters
- 30% of them lack apparent TATA signal
- So, split model:

TATA containing promoter

- Generated with probability 0.7
- 15 bp TATA-box WMM and 8 bp cap site WMM
- TATA-less
- Generated with probability 0.3
- Modeled as intergenic-null regions of 40bp

Signal models

- WMM (Weight Matrix Method)
- $p_{j}(i)$ is probability of nucleotide j at position i.
- Multiplicative.
- WAM (Weight Array Model)
- Markov chains. $\mathrm{p}_{\mathrm{j}, \mathrm{k}}(\mathrm{i}-1, \mathrm{i})$ is probability of nucleotide k at position i conditional on nucleotide j at position i-1.
- MDD (Maximal Dependence Decomposition)

Transcriptional and
 Translational Signals

- PolyA signal
- 6 base pairs WMM (AATAAA)
- Translation Initiation signal
- 12 base pairs WMM (6 base pairs prior to start codon)
- Translation termination signal
- 1 of 3 stop codons according to observed frequency
- Next 3 nucleotides using WMM


```
Exon emission models
- Inhomogeneous 3-periodic fifth order Markov model.
- Different model for \(C+G\) group I.
- Maintain phase.
```


Non-coding emission models

- For UTR, intergenic and intron regions,
- Homogeneous fifth-order Markov model
- Model's goal is to generate "Optimal Parse"
- Parse (X) consists of
- Ordered set of states $=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ where $s_{i} \varepsilon\left\{S_{j} / j=1\right.$ to 27$\}$
- Associated lengths (durations)
$(\mathrm{d})=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}\right\}$
- It generates DNA sequence O of length $L=\Sigma_{i=1 \text { ton }} d_{i}$.

Running the model

- An initial state s_{1} is chosen according to an initial distribution π on the states, i.e. $\pi_{i}=$ $P\left(s_{1}=S_{i}\right)$
- A length distribution d_{1} is generated conditional on $s_{1, \text { i.e. }} f_{s 1}\left(d_{1}\right)$

Using model

- Optimal parse can be computed by Viterbi algorithm (see Rabiner's extension in section 4D, pages 269-
- A sequence segment s_{1} of length d_{1} is generated conditional of s_{1} and d_{1} i.e. $\mathrm{P}\left(\mathrm{s}_{\mathrm{i}} \mid \mathrm{s}_{1}, \mathrm{~d}_{1}\right)$
- Subsequent state s_{2} is generated, conditional on s_{1}. First order Markov. $a_{i j}=$ $P\left(s_{k+1}=S_{j} \mid s_{k}=S_{i}\right)$

