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How to design an HMM for a 
new problem

Architecture/topology design:
What are the states, observation symbols, and 
the topology of the state transition graph?

Learning/Training:
Fully annotated or partially annotated training 
datasets
Parameter estimation by maximum likelihood or by EM

Validation/Testing:
Fully annotated testing datasets
Performance evaluation (accuracy, specificity and 
sensitivity)
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HMM model structure
Duration modeling

s LF
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h:0.1
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h:0.5
t:0.5

What is the probability of staying with
the fair coin for T time steps?
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Duration modeling
The duration in state F follows an 
exponentially decaying distribution 
called a geometric distribution.

This may be inappropriate for some 
applications. 

)05.0()95.0()( 1−== TTFXP
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Duration modeling
To obtain non-geometric length 
distributions, we use an array of n F 
states, as follows:

Generated length distribution is a 
negative binomial.
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Semi-Markov HMMs
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Hidden Semi-Markov models
Each state is associated with an 
explicit duration model of the form: 
P(|X|=L), where |X| is the length of 
the hidden state sequence in state X.
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Genscan
The Genscan HMM model
Training Genscan
Validating Genscan
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Structure of a human gene

Exon-intron structure
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Gene structure assumed by 
Genscan

acceptor sitedonor site
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Genscan’s architecture (1)
HMM states for exons and introns in 
three different phases, single exon, 
5’ and 3’ UTRs, promoter region, 
polyA site and intergenic region.

Explicit length modeling of introns
and exons.
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Genscan HMM

N
(intergenic

region)

R
everse (-) 

strand
Forw

ard (+) 
strand

E0 +

E1 +

E2 +

I0 +

I1 +

I2 +

Einit+

Eterm+

F +
(5’UTR)

T +
(3’UTR)

P +
(prom)

A +
(polyA 
signal)

Esngl +
(single-exon 

gene)

A -
(polyA 
signal)

P -
(prom)

F -
(5’UTR)

T -
(3’UTR)

Einit-

Eterm-

I0 -

I1 -

I2 -

E0 -

E1 -

E2 -

Esngl -
(single-exon 

gene)

(“Prediction of complete gene structures in human genomic DNAPrediction of complete gene structures in human genomic DNA”(1997) Burge and Karlin, JMB 268, p. 86)
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Genscan model components
Vector of initial probabilities π
State Transition probability Matrix T
Set of length distributions fQ(i)
conditional on state
Sequence generating model P(s|q,d) 
conditional on state and length.
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Isochore groups

260054003600083000Est. mean integenic length (bp)

51880110862069Mean intron length (bp)

5.65.54.95.1Introns per multi-exon gene

11651118908902Codelen: multi-exon genes (bp)

1137130412511130Codelen: single-exon genes (bp)

0.160.230.190.16Est. proportion single-exon genes

1019911565Number of genes

>5751-5743-51<43C + G% range

IVIIIIIIGroup
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Initial probabilities

0.0720.0450.0110.0053' Untranslated region (T+, T-)

0.1220.0770.0180.0085' Untranslated region (F+, F-)

0.3880.3380.1030.095Intron (I0+,I1+,I2+,I0-,I1-,I2-)

0.4180.540.8670.892Intergenic (N)

All other probabilities set to zero.

I        II         III       IV
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Transition probabilities
Sure transitions are assigned 
probability 1.
The others are set according to 
maximum likelihood values in training 
data.
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Exon and intron models

5th order homogeneous Markov model : 

)|( 54321 −−−−− tttttt ooooooP

Phases of the exons

5th order inhomogeneous
Markov model
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A Fifth Order Markov Chain
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Inhomogenous Markov Chains
In the Markov chain models we have 
considered so far, the probabilities do 
not depend on where we are in a given 
sequence
In an inhomogeneous Markov model, we 
have different distributions at 
different positions in the sequence.

21321
6554433221 xxxxxxxxxx aaaaa
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A Fifth Order Inhomogenous
Markov Chain
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Exon/intron/UTR model
Exons -- inhomogeneous 3-periodic 
fifth order Markov model.
Introns and intergenic regions -
homogeneous 5th order Markov model
5’ and 3’ UTRs - homogeneous 5th 
order Markov model
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Length distributions 
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Length distribution for 
introns

No introns < 65bp. After that 
geometric (exponential) distribution.
Substantial difference between 
different C+G groups.
So, intron length is modeled as 
geometric distribution with different 
parameters of different C+G groups.
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Exon length distribution model
Exons are very important to model.
Substantial differences in length 
distribution between initial, internal and 
terminal exons.
No substantial difference between 
different C+G compositional groups.
Exon length means considered between 50 
and 300 bps.
Account for phase (3*codons + phase)
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Other length distributions
5’ UTR -> Geometric with mean 769bp
3’ UTR -> Geometric with mean 457bp
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Genscan architecture (2)
Weighted matrix and weighed arrays 
for acceptor splice site, polyA site 
and promoter region.
Decision tree (maximal dependence 
decomposition) for donor sites.
Different model parameters for 
regions with different GC content. 
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Signal models
WMM (Weight Matrix Method)

pj(i) is probability of nucleotide j at position i.
Multiplicative.

WAM (Weight Array Model)
Markov chains. pj,k(i-1,i) is probability of 
nucleotide k at position i conditional on 
nucleotide j at position i-1.

MDD (Maximal Dependence Decomposition)
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Weighted matrix
Computed by measuring the frequency of every 
element of every position of the site (weight)

Score for any putative site is the sum of the 
matrix values (converted in probabilities) for that 
sequence (log-likelihood score)

TACGAT

TATAAT

TATAAT

GATACT

TATGAT

TATGTT
610505T
003001G
010100C
043060A

654321
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Transcriptional and 
Translational Signals

PolyA signal
6 base pairs WMM (AATAAA)

Translation Initiation signal
12 base pairs WMM (6 base pairs prior to start 
codon)

Translation termination signal
1 of 3 stop codons according to observed 
frequency
Next 3 nucleotides using WMM
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Promotor model
Promoters

30% of them lack apparent TATA signal
So, split model:
TATA containing promoter

Generated with probability 0.7
15 bp TATA-box WMM and 8 bp cap site WMM

TATA-less
Generated with probability 0.3
Modeled as intergenic-null regions of 40bp
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2. Splice Site Detection
(http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html)

Donor: 7.9 bits
Acceptor: 9.4 bits
(Stephens & Schneider, 1996)
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Acceptor splice site
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Acceptor splice site model
Consensus region from -20 to +3
Windowed second-order WAM model 
(WWAM)
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Donor splice site
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Donor splice site model
Consensus region -3 to +6 (3 on exon, 
6 on intron)
WMM or WAM not sufficient to 
model because of dependencies on 
non-adjacent nucleotides.
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MDD algorithm
Absence of nucleotide G at 

position +5 implies  a great 
consensus matching at 
position -1.

H = A/C/U

B=C/G/U

V=A/C/G
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MDD algorithm
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atg

tga

ggtgag

ggtgag

ggtgag

caggtg

cagatg

cagttg

caggcc
ggtgag
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Exon emission models
Inhomogeneous 3-periodic fifth order 
Markov model.
Different model for C+G group I.
Maintain phase. 
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Non-coding emission models
For UTR, intergenic and intron
regions,

Homogeneous fifth-order Markov model
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Using Genscan for gene finding
Model’s goal is to generate “Optimal Parse”
Parse (X) consists of

Ordered set of states = {s1,s2,…,sn}
where si ε {Sj / j=1 to 27}
Associated lengths (durations)
(d) = {d1,d2,…,dn}
It generates DNA sequence O of length
L = Σi=1 to ndi.
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Running the model
An initial state s1 is chosen according to an 
initial distribution π on the states, i.e. πi = 
P(s1=Si)
A length distribution d1 is generated 
conditional on s1,i.e. fs1 (d1)
A sequence segment s1 of length d1 is 
generated conditional of s1 and d1 i.e. 
P(si|s1,d1)
Subsequent state s2 is generated, 
conditional on s1. First order Markov. aij = 
P(sk+1= Sj |sk=Si}
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Using model 
Optimal parse can be computed by 
Viterbi algorithm (see Rabiner’s
extension in section 4D, pages 269-
270).
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Genscan output
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Genscan
The Genscan HMM model
Training Genscan
Validating Genscan

(c) Devika Subramanian, 2006 113

Evaluating gene finders
Calculating accuracy of programs’
predictions

Several evaluation studies:
Burset and Guigó, 1996 (vertebrate 
sequences)
Pavy et al., 1999 (Arabidopsis thaliana)
Rogic et al., 2001 (mammalian sequences)
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Measures of Prediction Accuracy

TN FPFN TN TNTPFNTP FN

REALITY

PREDICTION

number of correct exons
number of actual exons

number of correct exons
number of predicted exons

Sensitivity

Specificity

Nucleotide level accuracy
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Measures of Prediction Accuracy
Exon level accuracy

REALITY

PREDICTION

WRONG
EXON

CORRECT
EXON

MISSING
EXON
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Evaluation Results
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Genscan and Chromosome 22
I. Dunham, Nature 402:489-95, 1999
Chromosome 22 

Annotated genes: 94% predicted 
partially
Annotated exons: 84% predicted 
partially
Predicted exons: 30% more than 
annotated exons. How many of them are 
real exons?


