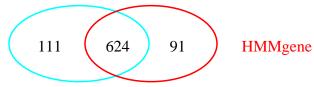


Integrated approaches for gene finding

- Programs that integrate results of similarity searches with ab initio techniques (GenomeScan, FGENESH+, Procrustes)
- Programs that use synteny between organisms (ROSETTA, SLAM)
- Integration of programs predicting different elements of a gene (EuGène)
- Combining predictions from several gene finding programs (combination of experts)

(c) Devika Subramanian, 2006

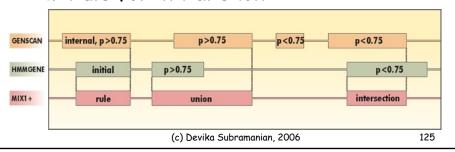


Combining Genscan and HMMgene

 High prediction accuracy as well as reliability of their exon probability make them good candidates.

Genscan

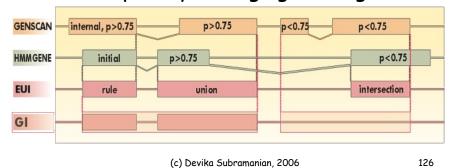
 Genscan predicted 77% of exons correctly, HMMgene 75%, both 87%


(c) Devika Subramanian, 2006

124

EUI Method

(exon union - intersection)


- Union of exons with p≥0.75
- 2. Intersection of exons with p<0.75
- 3 Rule for initial exon

Gene intersection (GI) method

- 1. Intersection of genes
- Apply EUI method to exons completely belonging to GI genes

EUI with reading frame consistency

- Assign probabilities to GI genes.
 Determine position of acceptor and donor site in a reading frame.
- 2. GI gene with higher probability imposes the reading frame. Choose only EUI exons contained in GI genes that are in a chosen reading frame.

(c) Devika Subramanian, 2006

Results - Burset/Guigó dataset

METHODS RO	#no	Nucleotide accuracy			Exon accuracy				
	prediction	Su	Sp	AC	ESn	ESp	(ESn+Esp)/	ME	WE
Genscan	8	0.94	0.93	0.92	0.78	0.81	0.80	0.09 (203)	0.05 (188)
HMMgene	38	0.93	0.94	0.92	0.81	0.83	0.82	0.14 (308)	0.04 (139)
EUI	20	0.94	0.96	0.93	0.83	0.88	0.85	0.12 (250)	0.03 (98)
GI	43	0.91	0.97	0.93	0.82	0.90	0.86	0.18 (386)	0.02 (67)
EUI_frame	27	0.93	0.96	0.93	0.83	0.88	0.85	0.13 (286)	0.03 (87)

(c) Devika Subramanian, 2006

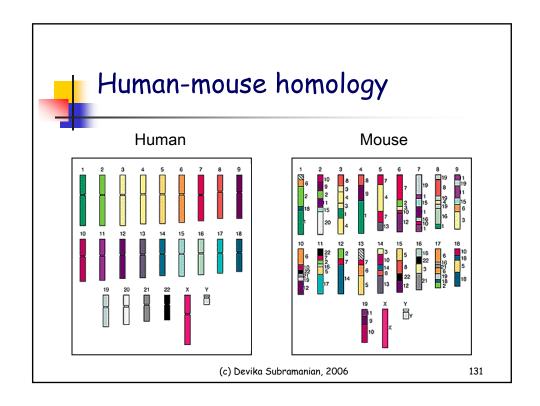
128

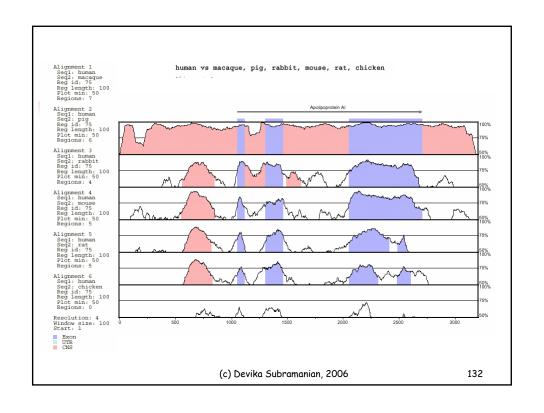
Summary: Eukaryotic gene finding

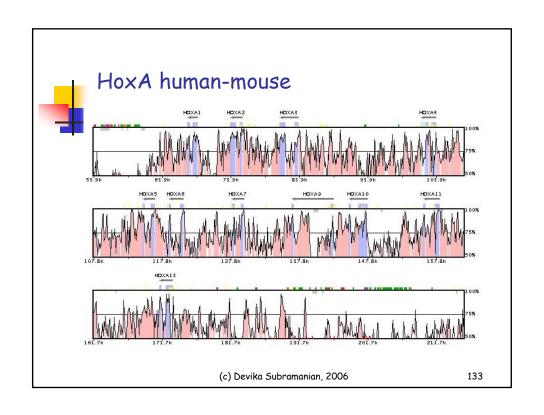
- Overall accuracy usually below 50%
 - Human gene finding is hardest
 - Very long introns, and lots of them
- Leading methods: HMMs and variants
- New ideas needed
- New opportunity: use sequence of related species

(c) Devika Subramanian, 2006

Comparison of 1196 orthologous genes


Sequence identity between genes in human/mouse

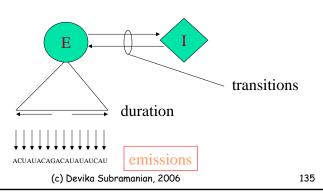

exons: 84.6%protein: 85.4%introns: 35%5' UTRs: 67%


- 3' UTRs: 69%

• 27 proteins were 100% identical.

(c) Devika Subramanian, 2006

4


Alignment

50	
247	GGTGAGGTCGAGGACCCTGCA CGGAGCTGTATGGAGGGCA AGAGC
	: : : ::
368	GAGTCGGGGGAGGGGCTGCTGTTGGCTCTGGACAGCTTGCATTGAGAGG
100	
292	TTC CTACAGAAAAGTCCCAGCAAGGAGCCACACTTCACTG
	:: : : : :
418	TTCTGGCTACGCTCTCCCTTAGGGACTGAGCAGAGGGCT CAGGTCGCGG
150	
332	ATGTCGAGGGGAAGACATCATTCGGGATGTCAGTG
467	
-0,	
200	
367	TTCAACCTCAGCAATGCCATCATGGGCAGCGGCATCCTGGGACTCGCCTA
517	TTCAATCTCAGCAACGCCATCATGGGCAGTGGAATTCTGGGGCTCGCCTA
	(c) Devika Subramanian 2006

Twinscan

 Twinscan is an augmented version of the Genscan HMM.

Twinscan Algorithm

- Align the two sequences (e.g. from human and mouse)
- 2. Mark each human base as gap (), mismatch (:), match (|)

New "alphabet": $4 \times 3 = 12$ letters

 $\Sigma = \{ A-, A:, A|, C-, C:, C|, G-, G:, G|, U-, U:, U| \}$

(c) Devika Subramanian, 2006

136

Twinscan Algorithm

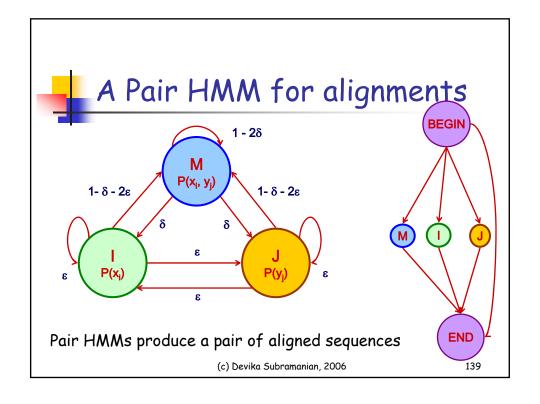
3. Run Viterbi using emissions $e_j(k)$ where $k \in \{A-, A:, A|, ..., T|\}$

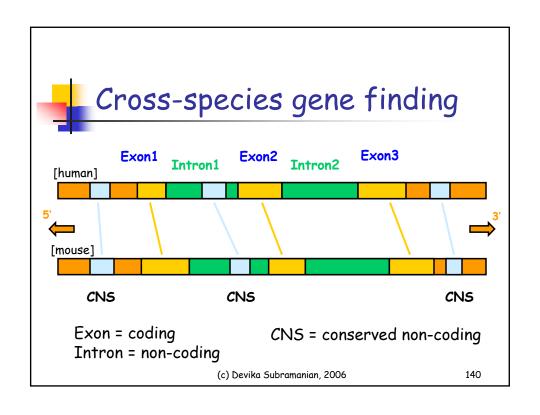
Emission distributions $e_j(k)$ estimated from real genes from human/mouse

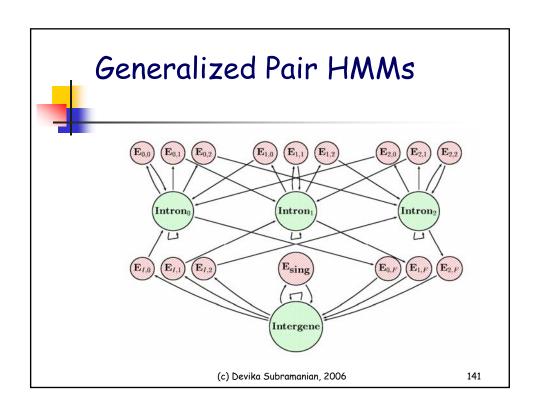
 $e_{I}(x|) < e_{E}(x|)$: matches favored in exons $e_{I}(x-) > e_{E}(x-)$: gaps (and mismatches) favored in introns

(c) Devika Subramanian, 2006

Example


Human: ACGGCGACUGUGCACGU
Mouse: ACUGUGAC GUGCACUU
Alignment: ||:|:||-||||:|

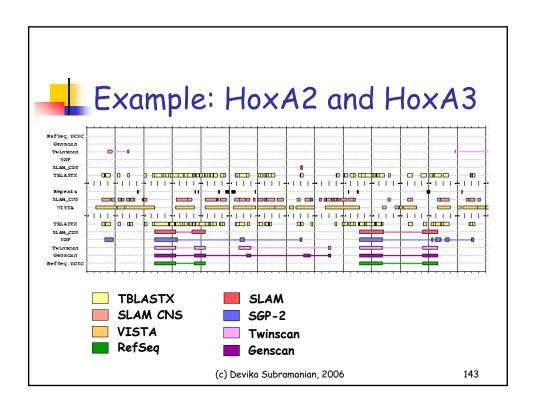

Input to Twinscan HMM:


A C G: G C: G A C U- G U G C A C G: U

Recall,
$$e_E(A|) > e_I(A|)$$

 $e_E(A-) < e_I(A-)$

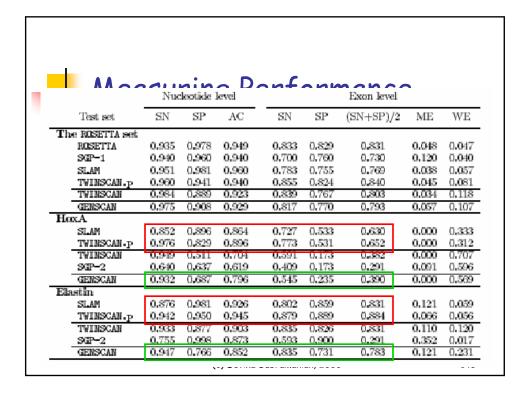
(c) Devika Subramanian, 2006



Ingredients in exon scores

- Splice site detection (VLMM)
- Length distribution (generalized)
- Coding potential (codon freq. tables)
- Isochore group

(c) Devika Subramanian, 2006



What have we learned from comparative gene finding?

- conservation is a stronger splice site indicator than consensus
- intron lengths have diverged
- gene structure conservation is more powerful than sequence conservation for prediction
- · consensus for GC splice sites

(c) Devika Subramanian, 2006

Priority organisms

Human-mouse gene finding not very high-impact

- lots of ancillary data gives better evidence
- most genes now known
- nonetheless, this problem is getting all the attention

Countless other species really need gene finders:

- Brugia malayi (causes lymphatic filariasis)
- Toxoplasma gondii
- Schistosoma mansoni (Schistosomiasis)
- Entamoeba histolytica (50 million cases/year)
- Tetrahymena thermophila (model organism)
- Plants: potato, maize, sorghum
- Mammals: chimp, dog, cow, pig

From the TIGR web site.
(c) Devika Subramanian, 2006

146

Genome scale gene finding

Strategy	Based on	Examples	
Ab initio prediction	Models of gene structure/comp	Genscan, GRAIL GenLang, hmmgene	
Microarray	Hybridization	Exon-scanning array	
Gene inference	Homology	GenomeScan	
Genomic:genomic alignment	Homology	ExoFish GLASS/Rosetta	
DNA:protein alignment	Homology	GeneWise	
cDNA sequencing	Sequencing	RIKEN	

C. Burge Nature Genet. 27, 5-7, 2001

(c) Devika Subramanian, 2006