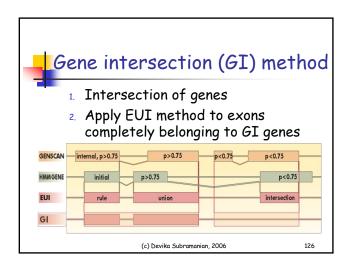

Integrated approaches for gene finding


- Programs that integrate results of similarity searches with ab initio techniques (GenomeScan, FGENESH+, Procrustes)
- Programs that use synteny between organisms (ROSETTA, SLAM)
- Integration of programs predicting different elements of a gene (EuGène)
- Combining predictions from several gene finding programs (combination of experts)

(c) Devika Subramanian, 2006

EUI with reading frame consistency

- Assign probabilities to GI genes.
 Determine position of acceptor and donor site in a reading frame.
- 2. GI gene with higher probability imposes the reading frame. Choose only EUI exons contained in GI genes that are in a chosen reading frame.

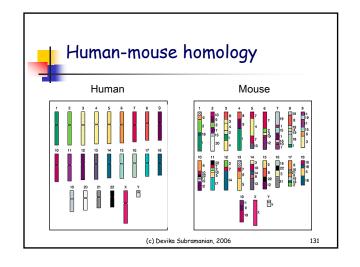
(c) Devika Subramanian, 2006

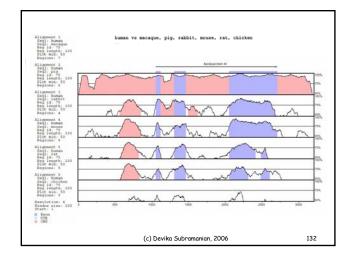
127

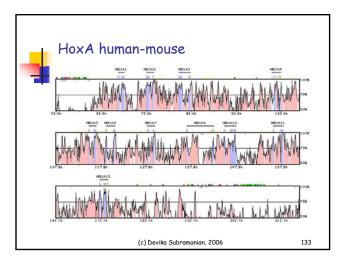
Summary: Eukaryotic gene finding

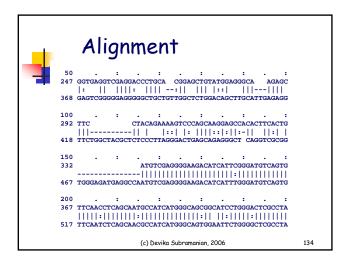
- Overall accuracy usually below 50%
 - Human gene finding is hardest
 - Very long introns, and lots of them
- Leading methods: HMMs and variants
- New ideas needed
- New opportunity: use sequence of related species

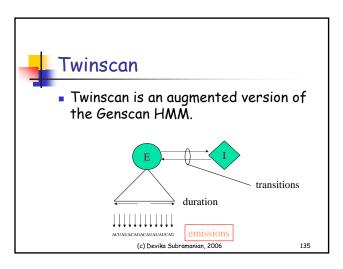
(c) Devika Subramanian, 2006


Comparison of 1196 orthologous genes


Sequence identity between genes in human/mouse


exons: 84.6%protein: 85.4%introns: 35%5' UTRs: 67%3' UTRs: 69%


• 27 proteins were 100% identical.


(c) Devika Subramanian, 2006

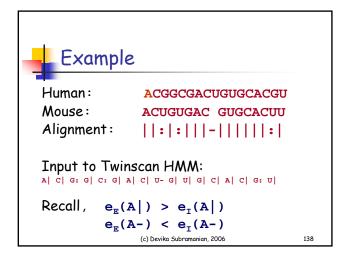
Twinscan Algorithm

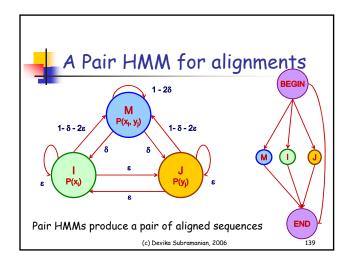
- 1. Align the two sequences (e.g. from human and mouse)
- Mark each human base as gap (), mismatch (:), match (|)

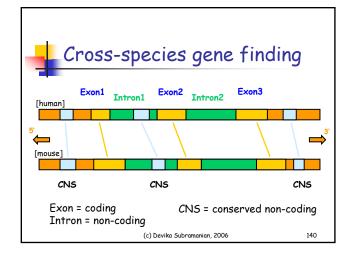
New "alphabet": $4 \times 3 = 12$ letters $\Sigma = \{ A-, A:, A|, C-, C:, C|, G-, G:, G|, U-, U:, U| \}$

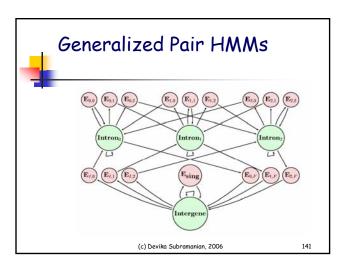
(c) Devika Subramanian, 2006

4

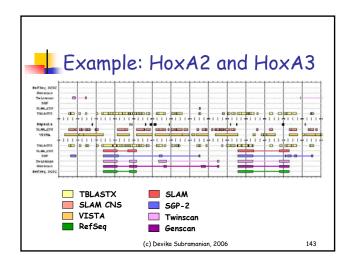

Twinscan Algorithm


Run Viterbi using emissions $e_j(k)$ where $k \in \{ A-, A:, A|, ..., T| \}$


Emission distributions $e_i(k)$ estimated from real genes from human/mouse


 $e_{\rm I}(x|)$ < $e_{\rm E}(x|)$: matches favored in exons $e_{\rm I}(x-)$ > $e_{\rm E}(x-)$: gaps (and mismatches) favored in introns

(c) Devika Subramanian, 2006



Ingredients in exon scores

- Splice site detection (VLMM)
- Length distribution (generalized)
- Coding potential (codon freq. tables)
- Isochore group

(c) Devika Subramanian, 2006

142

What have we learned from comparative gene finding?

- conservation is a stronger splice site indicator than consensus
- intron lengths have diverged
- gene structure conservation is more powerful than sequence conservation for prediction
- · consensus for GC splice sites

(c) Devika Subramanian, 2006

A A				_					
	Nucleotide level				enformance Exon level				
Test set	SN	SP	AC	SN	SP	(SN+SP)/2	ME	WE	
The ROSETTA set									
ROSETTA	0.935	0.978	0.949	0.833	0.829	0.831	0.048	0.04	
SGP-1	0.940	0.960	0.940	0.700	0.760	0.730	0.120	0.04	
SILAM	0.951	0.981	0.960	0.783	0.755	0.769	0.038	0.05	
TWINSCAN.p	0.960	0.941	0.940	0.855	0.824	0.840	0.045	0.08	
TWINSCAN	0.984	0.889	0.923	0.839	0.767	0.803	0.034	0.113	
GENSCAN	0.975	0.908	0.929	0.817	0.770	0.793	0.057	0.10	
HoxA									
SILAM	0.852	0.896	0.864	0.727	0.533	0.630	0.000	0.33	
TWINSCAN .p	0.976	0.829	0.896	0.773	0.531	0.652	0.000	0.31	
TWINSCAN	0.949	0.511	0.704	0.591	0.173	0.882	0.000	0.70	
SGP-2	0.640	0.637	0.619	0.409	0.173	0.291	0.091	0.59	
GENSCAN	0.932	0.687	0.796	0.545	0.235	0.390	0.000	0.56	
Elastin									
SILAM	0.876	0.981	0.926	0.802	0.859	0.831	0.121	0.05	
TWINSCAN.P	0.942	0.950	0.945	0.879	0.889	0.884	0.066	0.05	
TWINSCAN	0.933	0.877	0.903	0.835	0.826	0.831	0.110	0.12	
SGP-2	0.755	0.998	0.873	0.593	0.900	0.291	0.352	0.01	
GENSCAN	0.947	0.766	0.852	0.835	0.731	0.783	0.121	0.23	

Priority organisms

- Human-mouse gene finding not very high-impact
 - lots of ancillary data gives better evidence
 - most genes now known
 - nonetheless, this problem is getting all the attention
- Countless other species really need gene finders:
 - Brugia malayi (causes lymphatic filariasis)
 - Toxoplasma gondii
 - Schistosoma mansoni (Schistosomiasis)
 - Entamoeba histolytica (50 million cases/year)
 - Tetrahymena thermophila (model organism)
 - Plants: potato, maize, sorghum
 - Mammals: chimp, dog, cow, pig

From the TIGR web site.

146

Genome scale gene finding

Strategy	Based on	Examples
Ab initio prediction	Models of gene structure/comp	Genscan, GRAIL GenLang, hmmgene
Microarray	Hybridization	Exon-scanning array
Gene inference	Homology	GenomeScan
Genomic:genomic alignment	Homology	ExoFish GLASS/Rosetta
DNA:protein alignment	Homology	GeneWise
cDNA sequencing	Sequencing	RIKEN

C. Burge Nature Genet. 27, 5-7, 2001

(c) Devika Subramanian, 2006