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Supervised learning and 
analysis of microarray data

Devika Subramanian
Comp 470

Microarray technology

Quick recap
Proteins: state of cell
Gene: codes for a protein
mRNA: helps assemble a protein
mRNA levels ~  gene exp. level ~ protein levels

Microarrays measure the expression levels 
of thousands of genes at a time.
Typical experiment: Measure expression of 
genes under different conditions and ask what is 
different at a molecular level and why.
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Microarrays

Cy3 Cy5

ReferenceTest Sample
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(LIBRARY)
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Biological Sample

RNA

ARRAY
ARRAY

Ramaswamy and Golub, 
Jounal of Clinical Oncology

Affymetrix arrays

50um

1.28cm

~107 oligonucleotides, 
half Perfectly Match mRNA (PM), 
half have one Mismatch (MM)
Raw gene expression is intensity 
difference: PM - MM

Raw image
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Microarray applications
Biological discovery

new and better molecular diagnostics
new molecular targets for therapy
finding and refining biological pathways

Recent examples
molecular diagnosis of leukemia, breast cancer.
appropriate treatment for genetic signature
potential new drug targets

Two computational tasks
Classifying gene expressions:  this week

What can be learnt about a cell from the set of 
all mRNA expressed in a cell? Classifying 
diseases: does a patient have benign prostate 
cancer or metastatic prostate cancer?

Inferring regulatory networks: next week
What is the “circuitry” of the cell? What are 
the genetic pathways of cancer?
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Common Approaches
Comparing two measurements at a 
time

Person 1, gene G: 1000
Person 2, gene G: 3200
Greater than 3-fold change: flag this 
gene

Comparing one measurement with a 
population of measurements… is it 
unlikely that the new measurement 
was drawn from same distribution?

Classification
Use our knowledge of class values, e.g., 
myeloma vs. normal etc., to gain added 
insight.
Find genes that are best predictors of 
class.

Can provide useful tests, e.g. for choosing 
treatment.
If predictor is comprehensible, may provide 
novel insight, e.g., point to a new therapeutic 
target.
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Classifying gene exp data

Prediction:
AML or ALL

Gene Value
D26528_at 193
D26561_cds1_at     -70
D26561_cds2_at    144
D26561_cds3_at      33
D26579_at 318
D26598_at 1764
D26599_at 1537
D26600_at 1204
D28114_at 707

Prediction
function

New
sample

Microarray chips Images scanned by laser

Datasets 
Class Sno D26528 D63874 D63880  … 
ALL 2 193 4157 556  
ALL 3 129 11557 476  
ALL 4 44 12125 498  
ALL 5 218 8484 1211  
AML 51 109 3537 131  
AML 52 106 4578 94  
AML 53 211 2431 209  
…    

The data
Genes

Samples

Expression level of
gene j for sample i

i

j

classi

Samples are labeled.
Red line denotes vector of exp levels for sample i
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Heat maps

Challenges 
• Microarray data inherit large experimental and 

biological variances
• experimental  bias + tissue heterogeneity
• cross-hybridisation
• ‘bad design’: confounding effects

• Microarray data are sparse
• high-dimensionality of  genes
• low number of samples/arrays
• Curse of dimensionality

• Microarray data are highly redundant
• Many genes are co-expressed, thus their 

expression is strongly correlated. 
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Classification

Class +1

Class -1

?

?

?Given examples drawn from
two classes, learn to classify
new examples into the correct
class.

Each point represents
a vector of gene
expression levels

The classification problem

Given training data {(x1,y1),…,(xm,ym)}, 
xi in Rn, yi in {+1,-1}.
Estimate function h:Rn {+1,-1} such 
that h will correctly classify new
unseen examples from the same 
underlying probability distribution as 
the training data.
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Classification as optimization
Set S of training data points
Class H of hypotheses/models
Optimization problem:  Find the 
hypothesis/model  h in H that best fits all 
data.

Training
Data

h

Hypothesis 
Space

Objective function

Minimizing training set error does not 
imply minimizing true error!
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Statistical machine learning 
theory

Non-asymptotic theory, based on finite 
samples which bounds true error in terms 
of training set error.

Gives tradeoff between complexity of 
model and amount of data needed to learn 
it.

A bound on true error

VC dimension theory allows us to relate 
train and test error for particular function 
classes. The key intuition is that the error 
of a function is not an absolute, but 
relative to the class of functions it is 
drawn from.

m
hVCmhVChRhR train

)4/log()1)(/2)(log(][][ δ−+
+≤

VC(h) is the VC dimension of the class from which h
is drawn and delta is the probability bound, m is 
the size of the training set (Vapnik, 1995).
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Tradeoffs
With only a small amount of data, we 
can only discriminate between a small 
number of different hypotheses.
As we get more data, we have more 
evidence, so we can consider more 
alternative hypotheses.
Complex hypotheses give better fit 
to the data.

Simple hypothesis will under-
fit

Cannot take advantage of more data!

x

y

Best least squares
line 



11

Complex hypotheses will 
overfit

x

y

Adaptive hypothesis space 
selection

Find hypothesis h to minimize
error(h) + λ complexity(h)

Regularization
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Support vector machines

A new generation of learning algorithms 
based on

Non-linear optimization
Statistics
Functional analysis

Come with theoretical guarantees on 
performance, because the learning problem 
can be reduced to convex optimization.

Applications

SVMs have been used in a wide 
variety of tasks and are reputed to 
be the best for

Text categorization
Handwriting recognition
Classification of gene expression data
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History

Introduced in 1992 by Boser, Guyon
and Vapnik (COLT 1992).
Very rapid growth since then. 2 
excellent textbooks and lots of new 
work both in theory and applications.
www.kernel-machines.org is a great 
resource for learning about SVMs.

The Problem

Given training data {(x1,y1),…,(xm,ym)}, 
xi in Rn, yi in {+1,-1}.
Estimate function h:Rn {+1,-1} such 
that h will correctly classify new 
unseen examples from the same 
underlying probability distribution as 
the training data.
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Linear support vector machines

Consider the class of oriented 
hyperplanes in Rn. 

h(x) = sign(w.x + b)
If data is linearly separable, then 
there is a function from this class 
that separates the +1 points from the 
–1 points.

Linear separating hyperplanes
Unfortunately, there are an infinite 
number of linear hyperplanes that 
separate the data!
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Geometric Margin

w
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Geometric interpretation

w

The optimal
hyperplane is
orthogonal to
the shortest
line connecting
the convex hulls
of the two 
classes and
intersects it
halfway between
them.
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Margin maximization
Let x+ and x- be the two points on the convex hulls 
of the positive and negative data which are closest 
to the maximal margin hyperplane.
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Lambda is the margin width,
It is inversely proportional
to w.w. So to maximize
margin, we minimize w. 

Optimal separating hyperplane

Among all separating hyperplanes, there is 
one with the maximum margin.
A hyperplane separating data 
(x1,y1),…,(xm,ym) satisfies

(w.xi) + b >= 1 if yi = +1
(w.xi) + b <= -1 if yi = -1

Or in short…
yi[(w.xi)+b] >= 1, for i = 1..m

The optimal hyperplane satisfies the above 
conditions and has the minimal norm 
||w||2=w.w
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Learning the maximum margin 
classifier
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Quadratic programming!
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L must be minimized with respect to w and b
and maximized with respect to the Lagrange
multipliers alphai

The first derivative with respect to w and b
must vanish at the saddle point.
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Solving the quadratic program
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This means w has an expansion in terms of
a subset of the training data, namely those
(xi,yi) for which alphai > 0. These data points
are called support vectors. None of the other
data points matter. The maximal margin
hyperplane is completely determined by the 
support vectors.
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Geometric interpretation

w

The optimal
hyperplane is
determined
by the 3 support
vectors.

wTx+b=-1
wTx+b=+1
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The hyperplane decision function uses the 
support vectors alone, and takes the dot product
of the support vectors with x.

Note: b is calculated from the KKT comp. condn.



20

Cancer classification
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Test data

38 examples of Myeloid and 
Lymphoblastic leukemias (Golub et al, 
1999)

Affymetrix human 6800, (7128 genes 
including control genes)

34 examples to test classifier

Extension to non-separable data

Idea #1: soft margin hyperplane

z

z

Slack variables
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Soft margin hyperplanes
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We can set up the Lagragian and solve for w, b
and zsi using the KKT conditions.
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The KKT conditions
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That is, support vectors lie on the margin!
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Non-linear support vector 
machines

A generalization to handle the case when 
the decision function f is known to be not a 
linear function of the input x.
Central idea: feature spaces. Map the x 
onto a higher dimensional feature space 
phi(x). Then, use linear support vector 
machines to obtain the optimal separating 
hyperplane in this high dimensional feature 
space.

Example

x

y

),2,()),((
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32

yxyxyx =
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ϕ

ϕ

z1

z3

z1 + z3 <= R
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Direct mapping

Direct mapping to a high dimensional 
space suffers from the curse of 
dimensionality. To consider all dth

order products of an n-dimensional 
vector, we have to consider 

(n+d-1)!/(d!(n-1)!) terms
For n = 16x16, d = 5, we have a 1010 

dimensional feature space.

A closer look at decision fn
Note that decision function is of the form

We only use dot products of the input 
vectors for determining the optimal 
separating hyperplane.
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Kernels to the rescue

If we want to find a separating 
hyperplane in the feature space, we 
need to compute the dot product of 
phi(x) and phi(xi).
Define a kernel function K which 
returns the dot product of the 
images of its two arguments

)()(),( 2121 xxxxK Tϕϕ=

Non-linear support vector 
machines
The decision function is of the form

We only use dot products of the input 
vectors for determining the optimal 
separating hyperplane.
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Examples of kernels

Polynomial kernel

Second degree polynomial kernel

Generalized polynomial kernel
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More kernels

Exponential kernel (Gaussian RBF)

Tanh kernel
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Wolfe dual form
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Derived by substituting for w and b into L(w,b,alpha).

Advantage: maximization expressed in terms of dot
products of the x’s. Used for learning non-linear
SVMs

Mercer condition

Identifies the class of functions for 
which K(x,y) is the dot product of 
phi(x) and phi(y).
See the excellent tutorial by C. 
Burges (available from www.kernel-
machines.org) for a discussion of this 
condition.
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General support vector 
machines

We will substitute phi(x) for x in our 
previous formulation.
Solutions are of the form:
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SVM demo

Click here
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Feature selection
SVMs as stated use all genes/features.
Molecular biologists/oncologists seem to be 
convinced that only a small subset of genes are 
responsible for particular biological properties, so 
they want the “relevant” genes.

AML vs ALL: 40 genes 34/34 correct, 0 rejects.
5 genes 31/31 correct, 3 rejects of which 1 is 

an error.
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Test data

Test dataTest data

Results with feature 
selection

M
u Mukherjee et. al. 2005
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Two feature selection 
techniques

Recursive feature elimination (RFE): 
based upon perturbation analysis, eliminate genes that 
perturb the margin the least.

Optimize leave one out (LOO): based on the 
optimized leave-one-out error of an SVM.

Recursive feature 
elimination

(2) step goto and set gene reduced on SVM Retrain 4.

10%)
smallest (for magnitude absolute small  withelements vector

those to ingcorrespond enesfeatures/g input Discard 3.

value absoluteby   vector of elements order Rank 

 vector for problem SVM the Solve 

w

w

.2

.1
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Leave one out estimator
Leave one point out, train on the 
others, test on the left out point.
Repeat this for every point in the 
training data.
Leave-one-out estimate is almost 
unbiased.

Leave-one-out feature 
selection

Use the LOO estimator as an 
objective function in the search for 
subsets of features.


