

Microarray applications

- Biological discovery
 - new and better molecular diagnostics
 - new molecular targets for therapy
 - finding and refining biological pathways
- Recent examples
 - molecular diagnosis of leukemia, breast cancer.
 - appropriate treatment for genetic signature
 - potential new drug targets

• Minimizing training set error does not
imply minimizing true error!
$$R_{train}[h] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [h(x_i) - y_i]^2 \qquad \underset{risk}{\text{Empirical}}$$
$$R[h] = \int \frac{1}{2} [h(x_i) - y_i]^2 dP(x, y) \quad \text{True error}$$

The KKT conditions

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial w} = 0 \text{ which yields } w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial b} = 0 \text{ which yields } \sum_{i=1}^{m} \alpha_i y_i = 0$$

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial \xi_i} = 0 \text{ which yields } c - \alpha_i - \mu_i = 0$$

$$\frac{\partial L(w,b,\alpha,\xi)}{\partial \alpha_i} = 0 \text{ which yields } y_i (w^T x_i + b) - 1 + \xi_i \ge 0$$
KKT comp. condn. $\alpha_i (y_i (w^T x_i + b) - 1 + \xi_i) = 0$

- Direct mapping to a high dimensional space suffers from the curse of dimensionality. To consider all dth order products of an n-dimensional vector, we have to consider
 - (n+d-1)!/(d!(n-1)!) terms
- For n = 16×16, d = 5, we have a 10¹⁰ dimensional feature space.

