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= Quick recap
= Proteins: state of cell
= Gene: codes for a protein
= MRNA: helps assemble a protein
= MRNA levels ~ gene exp. level ~ protein levels
= Microarrays measure the expression levels
of thousands of genes at a time.
= Typical experiment: Measure expression of

genes under different conditions and ask what is
different at a molecular level and why.
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i Microarray applications

= Biological discovery
= new and better molecular diagnostics
= new molecular targets for therapy
= finding and refining biological pathways
= Recent examples
= molecular diagnosis of leukemia, breast cancer.
= appropriate treatment for genetic signature
= potential new drug targets

i Two computational tasks

= Classifying gene expressions: this week

= What can be learnt about a cell from the set of
all mMRNA expressed in a cell? Classifying
diseases: does a patient have benign prostate
cancer or metastatic prostate cancer?

= Inferring regulatory networks: next week

= What is the "circuitry” of the cell? What are
the genetic pathways of cancer?




i Common Approaches

= Comparing two measurements at a
time
= Person 1, gene G: 1000
= Person 2, gene G: 3200
= Greater than 3-fold change: flag this
gene
= Comparing one measurement with a
porula’rion of measurements... is it
unlikely that the new measurement
was drawn from same distribution?

i Classification

= Use our knowledge of class values, e.g.,

myeloma vs. normal etc., o gain added
insight.

= Find genes that are best predictors of
class.

= Can provide useful tests, e.g. for choosing
treatment.

= If predictor is comprehensible, may provide

novel insight, e.g., point o a new therapeutic
target.




i Classifying gene exp data
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i Challenges

* Microarray data inherit large experimental and
biological variances
experimental bias + tissue heterogeneity
cross-hybridisation
'bad design’: confounding effects

Microarray data are sparse
high-dimensionality of genes
low number of samples/arrays
Curse of dimensionality

Microarray data are highly redundant
* Many genes are co-expressed, thus their
expression is strongly correlated.




i Classification
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i The classification problem

= Given training data {(x1,y1),.(Xm.Ym)}.
X; inR", y; in {+1,-1}.

= Estimate function h:R" = {+1,-1} such
that h will correctly classify new
unseen examples from the same
underlying probability distribution as
the training data.




i Classification as optimization

= Set S of training data points
= Class H of hypotheses/models

= Optimization problem: Find the
hypothesis/model h in H that best fits all
data.

i Objective function

= Minimizing training set error does not
imply minimizing true error!

m

1 Empirical
Rtrain[h] = HZ;[h(Xu) —y. ]2 rir:lf rica

i=1

R[N = [ 1[h(x) -y, FdP(x,y) True error




Statistical machine learning

i theory

= Non-asymptotic theory, based on finite
samples which bounds true error in terms
of training set error.

" Gives tradeoff between complexity of
model and amount of data needed to learn
it.

iA bound on true error

= VC dimension theory allows us to relate
train and test error for particular function
classes. The key intuition is that the error
of a function is not an absolute, but
relative to the class of functions it is
drawn from.

[h]+ \/VC(h)(Iome/VC(h)Jrl)—Iog(§/4)

m

R[h] <R

train

VC(h) is the VC dimension of the class from which h
is drawn and delta is the probability bound, m is
the size of the training set (Vapnik, 1995).




i Tradeoffs

= With only a small amount of data, we
can only discriminate between a small
number of different hypotheses.

= As we get more data, we have more
evidence, so we can consider more
alternative hypotheses.

= Complex hypotheses give better fit
to the data.

Simple hypothesis will under-

i fit

Best least squares
line

Cannot take advantage of more datal
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i

Complex hypotheses will
overfit

Y

Adaptive hypothesis space

i selection

= Find hypothesis h to minimize
error(h) + & complexity(h)

Regularization
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i Support vector machines

= A new generation of learning algorithms
based on
= Non-linear optimization
= Statistics
= Functional analysis

= Come with theoretical guarantees on
performance, because the learning problem
can be reduced to convex optimization.

i Applications

= SVMs have been used in a wide
variety of tasks and are reputed to
be the best for
= Text categorization
= Handwriting recognition
= Classification of gene expression data
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i History

= Introduced in 1992 by Boser, Guyon
and Vapnik (COLT 1992).

= Very rapid growth since then. 2
excellent textbooks and lots of new
work both in theory and applications.

= www.kernel-machines.org is a great
resource for learning about SVMs.

i The Problem

= Given training data {(x1,y1),.(Xm.Ym)}.
X; inR", y; in {+1,-1}.

= Estimate function h:R" = {+1,-1} such
that h will correctly classify new
unseen examples from the same
underlying probability distribution as
the training data.
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i Linear support vector machines

= Consider the class of oriented
hyperplanes in R™
= h(x) = sign(w.x + b)

= If data is linearly separable, then
there is a function from this class
that separates the +1 points from the

-1 points. o

(@) OO

i Linear separating hyperplanes

= Unfortunately, there are an infinite
number of linear hyperplanes that
separate the datal
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i Geometric Margin

/,Q x Coordinates of B=x—d —

v

B lies on line defined by w x+b =0

(x dm}b 0

Solving for d,

W' X+b

[

d =

i Geome’rrlc inferpretation

wa+b +1

The optimal
hyperplane is
orthogonal to
the shortest
line connecting
. the convex hulls
. of the two
" classes and
intersects it
halfway between
them.
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Margin maximization

= Let x* and x~ be the two points on the convex hulls
of the positive and negative data which are closest
to the maximal margin hyperplane.
1. w'x" +b=+1

Lambda is the margin width,

2. WX +b=-1 It is inversely proportional
to w.w. So to maximize
3. X" =x" +,1H_WH margin, we minimize w.
W

w' (x" —x7) =2, from1.and 2.

A= L, from 3and above.
| wi|

i Optimal separating hyperplane

= Among all separating hyperplanes, there is
one with the maximum margin.

= A hyperplane separating data
(XY, (Xm.Ym) satisfies
= (wx)+b>=1lify,=+1
» (wx)+b<«=-1lify, =-1

= Or in short..
= yi[(wx)+b]>=1, fori=1.m

= The optimal hyperplane satisfies the above
conditions and has the minimal norm
[lw||?=w.w
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Learning the maximum margin
classifier

Find wand b that minimize
r(w) = 3w

subject to
y.(W'x; +b) >1, fori=1..m

Quadratic programming!

Solving the quadratic program

L(w,b,a) = 1w —iai (y, (W', +b)—1)

L must be minimized with respect fo w and b
and maximized with respect to the Lagrange
multipliers alpha;

The first derivative with respect to w and b
must vanish at the saddle point.
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i Solving the quadratic program

oL(w,b, @)

=0 which yields Y oy, =w

i=1

This means w has an expansion in terms of

a subset of the training data, namely those
(x;y;) for which alphaq; > 0. These data points
are called support vectors. None of the other
data points matter. The maximal margin
hyperplane is completely determined by the
support vectors.

Solving the quadratic program

LW.D.@) _ o \uhich yields Yy, =0
ob =
a;20,i=1.m

y,(W'x. +b)—-1>0,i=1..m
By the KKT complementarity condition,
a;(Y,(W'x, +b)—1) =0,i=1..m

Support vectors lie on the margin, because when
alphg;> 0, then y;( (w.x; + b) -1) = 0.

18



i Geometric interpretation

wa\lbz+1

The optimal
hyperplane is
determined

by the 3 support
vectors.

wTx+bz=-1

i Solution

h(x) = sign(w x+b)
= Sign(i (Vi (X" %) + b)]

i=1
The hyperplane decision function uses the

support vectors alone, and takes the dot product
of the support vectors with x.

Note: b is calculated from the KKT comp. condn.

19



i Cancer classification
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S 1999)
£ Affymetrix human 6800, (7128 genes
L including control genes)
Test data 34 examples to test classifier

iEx‘rension to non-separable data

= Idea #1: soft margin hyperplane

® Slack variables
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Soft margin hyperplanes

Minimize 1|w|" +¢> &,5 >0

subject to
yi(WTXi +b)>1-4,& 20

For delta = 1, this is a convex optimization problem.

We can set up the Lagragian and solve for w, b
and zsi using the KKT conditions.

Solving the opt. problem

Lwb, @, &) = 4w +¢

-3 (g wx +b) 1+ &)
- > L&
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The KKT conditions

oL(w,b,a,¢)

=0 which yieldsw=> "y

i—1

oLW,b.a,8) _ 5 \which yields iai y; =0
ob =t

oL(w,b, e, &)
o&

oL(w,b,a, &)
oa;

KKT comp.condn. e, (y, (W' x. +b)—1+&)=0

=0 whichyieldsc—¢, — 1, =0

=0 which yields y, (W' x, +b) -1+ & >0

i The solution

W= iai YiXi
i1

From the KKT complementarity condition, we get
support vectors are the training data points for

which Yi (W'Xi + b) -1+ ‘fi =0
y;(w.x; +b) =1-&

That is, support vectors lie on the margin!
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Non-linear support vector
machines

= A generalization to handle the case when
the decision function f is known to be not a
linear function of the input x.

= Central idea: feature spaces. Map the x
onto a higher dimensional feature space
phi(x). Then, use linear support vector
machines to obtain the optimal separating
hyperplane in this high dimensional feature
space.

o R >R
o((x, ¥)) = (x*,v/2xy, y?)




i Direct mapping

= Direct mapping to a high dimensional
space suffers from the curse of
dimensionality. To consider all d™
order products of an n-dimensional
vector, we have to consider
= (n+d-1)I/(dl(n-1)) terms

= For n=16x16,d = 5, we have a 1010
dimensional feature space.

i A closer look at decision fn

= Note that decision function is of the form

h(x) = sign(w' x+Db)

= sign(z oy, (XX, + bj

= We only use dot products of the input
vectors for determining the optimal
separating hyperplane.
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i Kernels to the rescue

= If we want to find a separating
hyperplane in the feature space, we
need to compute the dot product of
phi(x) and phi(x;).

= Define a kernel function K which
returns the dot product of the
images of its two arguments

K(X,X,) = ¢(X1)T o(X,)

Non-linear support vector
i machines

= The decision function is of the form

h(x) = sign(w' ¢(x) +b)

= Sign(z a;Y; (K(X,%;)) + bj

= We only use dot products of the input
vectors for determining the optimal
separating hyperplane.
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i Examples of kernels

= Polynomial kernel
K(x,y)=(x"y)’
= Second degree polynomial kernel
(% %,)) = (725, X3)
B((Y0r ¥2)) = (% V2V, ¥3)
KX y) = ()" #(¥) = (4 V7 2% %12, %3 Y3)
= (4 Y, +%,Y,)" = (X, %) (Y1, ¥,))* = (x"y)?
= Generalized polynomial kernel
K(x,y)=(x"y+c)’

i More kernels

= Exponential kernel (Gaussian RBF)
Jx-yI?

K(x,y) —g 20"

= Tanh kernel
K(x,y) = tanh(kx"y — )
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i Wolfe dual form

MaximizeW (&) = Zai —%Zaiajyiyj (x'X;)
i i
subjectto ¢, > 0;i=1..m
Z a;y; =0
Derived by slubs‘rituﬁng for w and b into L(w,b,alpha).
Advantage: maximization expressed in terms of dot

products of the x's. Used for learning non-linear
SVMs

i Mercer condition

= Identifies the class of functions for
which K(x,y) is the dot product of
phi(x) and phi(y).

= See the excellent tutorial by C.
Burges (available from www.kernel-
machines.org) for a discussion of this
condition.
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General support vector
machines

= We will substitute phi(x) for x in our
previous formulation.

= Solutions are of the form:
h(x) = sign(w’ x +b)

= Sign(i oY (p(x)" o(x) + b)]

i=1

= sign(zm: o, Y, K(X;, X) + b)j

i=1

i SVM demo

Click here
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i Feature selection

= SVMs as stated use all genes/features.

= Molecular biologists/oncologists seem to be
convinced that only a small subset of genes are
responsible for particular biological properties, so
they want the "relevant” genes.

Results with feature

i selection

AML vs ALL: 40 genes 34/34 correct, O rejects.
5 genes 31/31 correct, 3 rejects of which 1is
an error.

. &

d: distance fromhyperplane
d: distance fromhyperplane

5 L a
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Test data Test data

,A,A Mukherjee et. al. 2005
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Two feature selection
i techniques

= Recursive feature elimination (RFE):
based upon perturbation analysis, eliminate genes that
perturb the margin the least.

= Optimize leave one out (LOO): based on the
optimized leave-one-out error of an SVM.

Recursive feature
i elimination

1. Solve the SVM problem for vector w

2.Rank order elements of vector w by absolute value

3. Discardinput features/genes corresponding to those
vector elements with small absolute magnitude (for smallest

10%)

4.Retrain SVM onreduced gene set and goto step (2)
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i Leave one out estimator

= Leave one point out, train on the
others, test on the left out point.

= Repeat this for every point in the
training data.

= Leave-one-out estimate is almost
unbiased.

Leave-one-out feature

i selection

= Use the LOO estimator as an
objective function in the search for
subsets of features.
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