

Microarray technology

- Quick recap
- Proteins: state of cell
- Gene: codes for a protein
- mRNA: helps assemble a protein

- mRNA levels ~ gene exp. level ~ protein levels
- Microarrays measure the expression levels of thousands of genes at a time.
- Typical experiment: Measure expression of genes under different conditions and ask what is different at a molecular level and why.

Two computational tasks

- Classifying gene expressions: this week
- What can be learnt about a cell from the set of all mRNA expressed in a cell? Classifying diseases: does a patient have benign prostate cancer or metastatic prostate cancer?
- Inferring regulatory networks: next week
- What is the "circuitry" of the cell? What are the genetic pathways of cancer?

Classification

- Use our knowledge of class values, e.g., myeloma vs. normal etc., to gain added insight.
- Find genes that are best predictors of class.
- Can provide useful tests, e.g. for choosing treatment.
- If predictor is comprehensible, may provide novel insight, e.g., point to a new therapeutic target.

Challenges

- Microarray data inherit large experimental and biological variances
- experimental bias + tissue heterogeneity
- cross-hybridisation
- 'bad design': confounding effects
- Microarray data are sparse
- high-dimensionality of genes
- low number of samples/arrays
- Curse of dimensionality
- Microarray data are highly redundant
- Many genes are co-expressed, thus their expression is strongly correlated.

The classification problem

- Given training data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, x_{i} in R^{n}, y_{i} in $\{+1,-1\}$.
- Estimate function $h: R^{n} \rightarrow\{+1,-1\}$ such that h will correctly classify new unseen examples from the same underlying probability distribution as the training data.

Objective function

- Minimizing training set error does no \dagger imply minimizing true error!

$$
\begin{array}{ll}
R_{\text {train }}[h]=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left[h\left(x_{i}\right)-y_{i}\right]^{2} & \begin{array}{l}
\text { Empirical } \\
\text { risk }
\end{array} \\
R[h]=\int \frac{1}{2}\left[h\left(x_{i}\right)-y_{i}\right]^{2} d P(x, y) & \text { True error }
\end{array}
$$

Statistical machine learning theory

- Non-asymptotic theory, based on finite samples which bounds true error in terms of training set error.
- Gives tradeoff between complexity of model and amount of data needed to learn it.

A bound on true error

- VC dimension theory allows us to relate train and test error for particular function classes. The key intuition is that the error of a function is not an absolute, but relative to the class of functions it is drawn from.
$R[h] \leq R_{\text {train }}[h]+\sqrt{\frac{V C(h)(\log 2 m / V C(h)+1)-\log (\delta / 4)}{m}}$
$V C(h)$ is the $V C$ dimension of the class from which h is drawn and delta is the probability bound, m is the size of the training set (Vapnik, 1995).

Tradeoffs

- With only a small amount of data, we can only discriminate between a small number of different hypotheses.
- As we get more data, we have more evidence, so we can consider more alternative hypotheses.
- Complex hypotheses give better fit to the data.

Adaptive hypothesis space selection

- Find hypothesis h to minimize error(h) $+\lambda$ complexity(h)

Regularization

Support vector machines

- A new generation of learning algorithms based on
- Non-linear optimization
- Statistics
- Functional analysis
- Come with theoretical guarantees on performance, because the learning problem can be reduced to convex optimization.

Applications

- SVMs have been used in a wide variety of tasks and are reputed to be the best for
- Text categorization
- Handwriting recognition
- Classification of gene expression data

History

- Introduced in 1992 by Boser, Guyon and Vapnik (COLT 1992).
- Very rapid growth since then. 2 excellent textbooks and lots of new work both in theory and applications.
- www.kernel-machines.org is a great resource for learning about SVMs.

The Problem

- Given training data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, x_{i} in R^{n}, y_{i} in $\{+1,-1\}$.
- Estimate function $h: R^{n} \rightarrow\{+1,-1\}$ such that h will correctly classify new unseen examples from the same underlying probability distribution as the training data.

Margin maximization

- Let x^{+}and x - be the two points on the convex hulls of the positive and negative data which are closest to the maximal margin hyperplane.

1. $w^{T} x^{+}+b=+1$
2. $w^{T} x^{-}+b=-1$

Lambda is the margin width, It is inversely proportional to w.w. So to maximize
3. $x^{+}=x^{-}+\lambda \frac{w}{\|w\|}$ margin, we minimize w.
$w^{T}\left(x^{+}-x^{-}\right)=2$, from 1 . and 2.
$\lambda=\frac{2}{\|\mathrm{w}\|}$, from 3 and above.

Optimal separating hyperplane

- Among all separating hyperplanes, there is one with the maximum margin.
- A hyperplane separating data
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ satisfies
- $\left(w . x_{i}\right)+b>=1$ if $y_{i}=+1$
- $\left(w . x_{i}\right)+b<=-1$ if $y_{i}=-1$
- Or in short...
- $y_{i}\left[\left(w . x_{i}\right)+b\right]>=1$, for $i=1 . . m$
- The optimal hyperplane satisfies the above conditions and has the minimal norm $\|w\|^{2}=w . w$

Learning the maximum margin classifier

Find w and b that minimize

$$
\tau(\mathrm{w})=\frac{1}{2}\|w\|^{2}
$$

subject to

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1 \text {, for } i=1 . . m
$$

Quadratic programming!

Solving the quadratic program
$L(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i}\left(w^{T} x_{i}+b\right)-1\right)$
L must be minimized with respect to w and b and maximized with respect to the Lagrange multipliers alpha ${ }_{i}$

The first derivative with respect to w and b must vanish at the saddle point.

Solving the quadratic program
$\frac{\partial L(w, b, \alpha)}{\partial w}=0$ which yields $\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}=w$
This means w has an expansion in terms of a subset of the training data, namely those $\left(x_{i}, y_{i}\right)$ for which alpha >0. These data points are called support vectors. None of the other data points matter. The maximal margin hyperplane is completely determined by the support vectors.

Solving the quadratic program

$$
\frac{\partial L(w, b, \alpha)}{\partial b}=0 \text { which yields } \sum_{i=1}^{m} \alpha_{i} y_{i}=0
$$

$$
\alpha_{i} \geq 0, i=1 . . m
$$

$$
y_{i}\left(w^{T} x_{i}+b\right)-1 \geq 0, i=1 . . m
$$

By the KKT complementarity condition,

$$
\alpha_{i}\left(y_{i}\left(w^{T} x_{i}+b\right)-1\right)=0, i=1 . . m
$$

Support vectors lie on the margin, because when alpha $a_{i}>0$, then $y_{i}\left(\left(w . x_{i}+b\right)-1\right)=0$.

The KKT conditions

$\frac{\partial L(w, b, \alpha, \xi)}{\partial w}=0$ which yields $w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$
$\frac{\partial L(w, b, \alpha, \xi)}{\partial b}=0$ which yields $\sum_{i=1}^{m} \alpha_{i} y_{i}=0$
$\frac{\partial L(w, b, \alpha, \xi)}{\partial \xi_{i}}=0$ which yields $c-\alpha_{i}-\mu_{i}=0$
$\frac{\partial L(w, b, \alpha, \xi)}{\partial \alpha_{i}}=0$ which yields $y_{i}\left(w^{T} x_{i}+b\right)-1+\xi_{i} \geq 0$
KKT comp. condn. $\alpha_{i}\left(y_{i}\left(w^{T} x_{i}+b\right)-1+\xi_{i}\right)=0$

The solution

$$
w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}
$$

From the KKT complementarity condition, we get support vectors are the training data points for which

$$
\begin{aligned}
& y_{i}\left(w \cdot x_{i}+b\right)-1+\xi_{i}=0 \\
& y_{i}\left(w \cdot x_{i}+b\right)=1-\xi_{i}
\end{aligned}
$$

That is, support vectors lie on the margin!

Non-linear support vector machines

- A generalization to handle the case when the decision function f is known to be not a linear function of the input x.
- Central idea: feature spaces. Map the x onto a higher dimensional feature space phi (x). Then, use linear support vector machines to obtain the optimal separating hyperplane in this high dimensional feature space.

Direct mapping

- Direct mapping to a high dimensional space suffers from the curse of dimensionality. To consider all d ${ }^{\text {th }}$ order products of an n-dimensional vector, we have to consider - ($n+d-1$)!/(d!($n-1)!$) terms
- For $n=16 \times 16, d=5$, we have a 10^{10} dimensional feature space.

A closer look at decision fn

- Note that decision function is of the form

$$
\begin{aligned}
h(x) & =\operatorname{sign}\left(w^{T} x+b\right) \\
& =\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i}\left(x^{T} x_{i}\right)+b\right)
\end{aligned}
$$

- We only use dot products of the input vectors for determining the optimal separating hyperplane.

Kernels to the rescue

- If we want to find a separating hyperplane in the feature space, we need to compute the dot product of phi (x) and phi $\left(x_{i}\right)$.
- Define a kernel function K which returns the dot product of the images of its two arguments

$$
K\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}\right)^{T} \varphi\left(x_{2}\right)
$$

Non-linear support vector

- The decision function is of the form

$$
\begin{aligned}
h(x) & =\operatorname{sign}\left(w^{T} \phi(x)+b\right) \\
& =\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i}\left(K\left(x, x_{i}\right)\right)+b\right)
\end{aligned}
$$

- We only use dot products of the input vectors for determining the optimal separating hyperplane.

Examples of kernels

- Polynomial kernel
$K(x, y)=\left(x^{T} y\right)^{d}$
- Second degree polynomial kernel

$$
\begin{aligned}
& \phi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& \phi\left(\left(y_{1}, y_{2}\right)\right)=\left(y_{1}^{2}, \sqrt{2} y_{1} y_{2}, y_{2}^{2}\right) \\
& K(x, y)=\phi(x)^{T} \phi(y)=\left(x_{1}^{2} y_{1}^{2}, 2 x_{1} x_{2} y_{1} y_{2}, x_{2}^{2} y_{2}^{2}\right) \\
& =\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}=\left(\left(x_{1}, x_{2}\right)^{T}\left(y_{1}, y_{2}\right)\right)^{2}=\left(x^{T} y\right)^{2}
\end{aligned}
$$

- Generalized polynomial kernel $K(x, y)=\left(x^{T} y+c\right)^{d}$

More kernels

- Exponential kernel (Gaussian RBF)

$$
K(x, y)=e^{\frac{-\| x-\left.y\right|^{2}}{2 \sigma^{2}}}
$$

- Tanh kernel

$$
K(x, y)=\tanh \left(k x^{T} y-\delta\right)
$$

Wolfe dual form

Maximize $W(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i}^{T} x_{j}\right)$
subject to $\alpha_{i} \geq 0 ; i=1$..m

$$
\sum_{\mathrm{i}} \alpha_{\mathrm{i}} y_{i}=0
$$

Derived by substituting for w and b into $L(w, b, a l p h a)$.
Advantage: maximization expressed in terms of do \dagger products of the x 's. Used for learning non-linear SVMs

Mercer condition

- Identifies the class of functions for which $K(x, y)$ is the dot product of phi (x) and phi(y).
- See the excellent tutorial by C. Burges (available from www.kernelmachines.org) for a discussion of this condition.

General support vector machines

- We will substitute phi(x) for x in our previous formulation.
- Solutions are of the form:

$$
\begin{aligned}
h(x) & =\operatorname{sign}\left(w^{T} x+b\right) \\
& =\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\varphi\left(x_{i}\right)^{T} \varphi(x)+b\right)\right) \\
& \left.=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(x_{i}, x\right)+b\right)\right)
\end{aligned}
$$

Feature selection

- SVMs as stated use all genes/features.
- Molecular biologists/oncologists seem to be convinced that only a small subset of genes are responsible for particular biological properties, so they want the "relevant" genes.

Two feature selection techniques

- Recursive feature elimination (RFE): based upon perturbation analysis, eliminate genes that perturb the margin the least.
- Optimize leave one out (LOO): based on the optimized leave-one-out error of an SVM.

[^0]

Leave-one-out feature

 selection- Use the LOO estimator as an objective function in the search for subsets of features.

[^0]: ## Recursive feature

 elimination1. Solve the SVM problem for vector w
 2. Rank order elements of vector w by absolute value
 3. Discard input features/genes corresponding to those
 vector elements with small absolute magnitude (for smallest
 10\%)
 4. Retrain SVM on reduced gene set and goto step (2)
