Inferring requlatory,
signaling & metabolic
* networks from data

Devika Subramanian
Comp 470

i Networks

= Regulatory network: network of control
decisions used to turn genes on/off.

= Signaling network: interactions among
genes, gene products and small molecules
that activate cellular processes.

= Metabolic network: network of proteins
that synthesize and breakdown cellular
molecules.

(c) Devika Subramanian, 2006
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Genetic regulatory network of
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From expression data to
r gene requlatory networks
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From flow cytometry data to
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The galactose pathway (manually
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The glutathione metabolism
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i Outline

= The problem of learning regulatory, signaling and
metabolic networks from data

= A quick intro to Bayesian networks

= Algorithms for learning Bayesian networks from
data

= Examples
= Glutathione metabolism from humans (expression data)

= Regulatory network from yeast cell cycle (expression
data)

= T-cell signaling from humans (flow cytometry data)

(c) Devika Subramanian, 2006

i Challenges

= The cell is a complex stochastic domain:
signal transduction, metabolic and
regulatory paThways all interconnected.

= Pathways are controlled by combination of
many mechanisms.

= We only observe mRNA levels and/or
phospho-lipid levels.

= Many interactions are not directly
observed at the mRNA level

= Measurements are noisy.

(c) Devika Subramanian, 2006




i Some initial approaches

= Classification of expression data

= Reveals genes that are differentially
expressed.

= Disadvantage: does not reveal structural
relationships between genes.

o GENE LIST
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i Some initial approaches

= Clustering
techniques

= Many interesting
clusters of co-
regulated genes

= No system-level
insight.

(c) Devika Subramanian, 2006




i Some initial approaches

= Boolean networks

= Deterministic models of interactions between
genes.

= Disadvantage: deterministic. We need
stochastic models for representing
interactions.

(c) Devika Subramanian, 2006

i Why probabilistic models?

Gene regulation occurs at many stages:
= pre-transcriptional (chromatin structure)

transcription initiation

RNA editing (splicing) and transport

Translation initiation

Post-translation modification

= RNA & Protein degradation

All these processes are stochastic!

(c) Devika Subramanian, 2006




i Why Bayesian networks?

= The important science/technology to come
out of AT in the last 15 years.

= Underlies all important applications today.
= Frames every question as the estimation of
a conditional probability
= P(disease/problem|set of symptoms)
= P(email is spam|email text+header)
= P(hurricane will hit place X|movement history)
= P(sentence|acoustic signal)
= P(regulatory network|gene exp data)

(c) Devika Subramanian, 2006

Example: Akt pathway

Random variables: Akt, BAD, caspase-9

Conditional independencies:
P(BAD and caspase-9|AKT) =P(BAD|Akt)P(Caspase-9|AKkT)

P(Akt=1)=0.05

2+2+1

probabilities P(Caspase-9=1| Akt=1)=0.1

P(Caspase-9=1|Akt=0)=0.9

BAD

P(BAD=1|Akt=1) = 0.9
P(BA D=1 | AkT:O): 01 (c) Devika Subramanian, 2006




If Protein A is
low(0), Protein B
is high(1) with
probability 0.8

i Another example

P(B=1/A=0) = 0.8
P(B=1/A=1) = 0.3

Adapted from
SaChS, 2005 (c) Devika Subramanian, 2006

i Bayesian networks: the model

= A Bayesian network B = (V,E) is a directed acyclic
graph in which each node in V is annotated with
quantitative probability information.
= A set V of random variables are the nodes of
the network. They can be continuous or
discrete.
= If there is an edge from node X to node Y in E,
then X is said to be the parent of VY.
= Each node X in V has a conditional probability
distribution P(X|Parents(X)) associated with it.

(c) Devika Subramanian, 2006




& Segue

= ... to an old example from Pear| 1986.

= Tllustrates the major kinds of
stochastic dependencies that can be
modeled using Bayesian networks

(c) Devika Subramanian, 2006

i A simple Bayesian network

(c) Devika Subramanian, 2006
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Semantics of Bayesian
networks

= The topology of the network reflects a set

of conditional independence statements.

= Burglary and Earthquake directly affect the
probability of the alarm going off, but whether
or not John or Mary calls depends on the alarm.
John and Mary do not directly perceive
burglary or minor earthquakes.

= JohnCalls is conditionally independent of
MaryCalls given Alarm.

(c) Devika Subramanian, 2006

Specifying the
joint distribution
requires 31 probabilities,
here we only

Bayesian network with CPTs

P(B)=0.001 P(E)=0.002

P(A|B,E)=0.95
P(A|B,not E)=0.95
P(A|not B,E)=0.29
P(A|not B, not E)=0.001

specify

10.
P(J|A)=0.9 P(M|A)=0.7
P(J[not A)=0.05 P(M|not A)=0.01

(c) Devika Subramanian, 2006

11



Computing joint probability
distributions

= Any entry in the joint probability
distribution can be calculated from the
Bayesian network.

P(J,M, A —B,—E)=P(J|M, A —B,~E)P(M, A —B,—E)
=P(J | A)P(M | A, —B,—E)P(A,—B,—E)
=P(J | A)P(M | A)P(A|—B,—E)P(=B,—E)
=P(J|A)P(M | A)P(A|—B,—E)P(=B)P(~E)

(c) Devika Subramanian, 2006

i Computing joint probabilities

P(X; =X X, = %,) = [ [P(X; = x; | Parents(X;))

i=1

P(Burglary|Alarm) = 0.376
P(Burglary|Alarm,Earthquake) = 0.003

(c) Devika Subramanian, 2006
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i Summary of dependency types

Common cause Intermediate gene

Common effects
(c) Devika Subramanian, 2006

" Little is known about the design principles'™" of transcrip-

a anal regolaton natworks that strel geot expresion
cells. Recent advances in data collection and analysis®!112,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams*1013, we sought to break down such
networks into basic building blocks?. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define 'network motifs” as patterns of intercon-
b nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia col®®, We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene exp! ion, such as i P 1] i
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional netwark of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transeribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)**, We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive g-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed

nature.cf

N o—=< — X

Group http:
3

'@ ® 2002 Nature P

1 2 3 graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
Z1 22 23 Fig. 1 Network motifs found in the £ coli transcriptional regulation network.

symbols representing the motifs are aiso shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor ¥, and both jointly
requlate one or more operons 7, Z, b, Example of a feedforward loop (L-ara-
binose utilization). ¢, SIM motif- a single transcription factor, X, regulates a set
of operons Z,...Z,. X is usually autoregulatory. All regulations are of the same
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Conditional probability
i distributions

= Multinomial model
= Discrete values

= Linear Gaussian model
» AX Y, W, ..., 4) = May + = ,au;, 02)

(c) Devika Subramanian, 2006

Modeling genetic networks

Variables of interest:
= Expression levels of genes
= Concentration levels of proteins

= Exogenous variables: Nutrient levels,
Metabolite Levels, Temperature

Phenotype information

Bayesian Network Structure:
= Capture dependencies among these variables

(c) Devika Subramanian, 2006
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Advantages of Bayesian

networks

= Flexible representation of (in)dependency
structure of multivariate distributions and

interactions.

= Natural for modeling global processes with

local interactions.

= Clear probabilistic semantics.

= Natural for statistical confidence analysis
of results and answering of queries.

= Stochastic in nature: models stochastic
processes & deals well with noise in

measurements.

(c) Devika Subramanian, 2006

i Learning Bayesian networks

Discretization

EXpression
— t:-d-ata' aee

\ 4

Preprocess

Bayesian Network
Learning Algorithm

Learn
model

(c) Devika Subramanian, 2006
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i Need for discretization

¢ The expression measurements are real

numbers.

# We need to discretize them in order to learn
general conditional probability distributions.
This step entails a loss of information.

¢ If we don't discretize, we must assume some
specific type of conditional probability
distribution (like "linear Gaussian"), and this
assumption causes loss of modeling fidelity.

(c) Devika Subramanian, 2006

i Learning Bayesian Models

= Using gene expression data D, find the Bayesian network G that
is most likely given the data, i.e. G that maximizes P(G|D).
= Two cases
= Graph structure is known; the conditional probability distributions
are unknown.

= Recovering optimal conditional probability distributions when the graph
is known is “easy".

= Graph structure and the conditional probability distributions are
unknown.
= Recovering optimal graph structure is NP-hard.

(c) Devika Subramanian, 2006
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i Learning CPTs A8
On On On
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(c) Devika Subramanian, 2006 Off Off Off

Learning CPTs A 8
On On On

P(B='On'|A='On’) = 0.83 on oft  Off
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5/6 = 0.83 On on on
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Ooff Off Off

(c) Devika Subramanian, 2006
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Learning CPTs AL B C
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Learning CPTs A B ¢

- o On On On
P(B='On'|A='On’) = 0.83 on  Off Off

o P(B='Off' | A='Off')=0.8 On On Off
On On On

@ P(C='On'|A='On") = 0.66 on  on o

P(C='On’|B='0On')= 0.8 On On On
O Off Off Off

Off Off Off
Off Off Off
Off Off Off
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i Challenges

= Ab initio learning of cellular process is
difficult - data is extremely limited (few
hundred samples).

= Data is noisy: measurement and
interpretation problems, as well as
problems caused by tissue heterogeneity.

= Therefore, we need to incorporate
available knowledge of biological processes;
the role of expression data is to refine
known models.

(c) Devika Subramanian, 2006




Modeling cellular processes:
topology of glutathione network

= Three alternate synthesis

pathways for GSH-R: from
GPx4 GSH-0 by GSR, from GSH-

O by 6PX4, and

independently from GSS.

= Edges here are not causal;
edge directions chosen to
= Keep network acyclic
= Make nodes have no more
than two to three parents.
= Network is an alternate
but correct factoring of
the full joint distribution

A portion of the GSH network on expression levels.

(c) Devika Subramanian, 2006

Modeling cellular processes:
i the quantitative parameters

Conditional = Our models have a
GPX4 _ﬁ_""’jab"'*y quantitative component.
able

Each node has a conditional
probability distribution
associated with it.

s These models are learned

v

from datal
GPX GSH-O (normal)
low med high

lowr 0.67+0.25 | 0.234+0.24 [ 0.10+£0.24
med 0.334£0.40 [ 0.654+0.40 | 0.004£0.01
high 0.0440.07 | 0.134+0.10 [ 0.83+£0.09
GPX GSH-O (tumor)
A portion of the GSH network low med high

low 0.74+0.35 | 0.11+£0.16 | 0.1440.32
med 0.68+0.34 | 0.09+£0.13 | 0.23+0.27
high 0.024+0.02 | 0.02+0.02 | 0.96+0.02

(c) Devika Sut




Learning CPTs from data

= To learn a CPT of the form P(Y|X), where Y and X
are both observed, we can use maximum likelihood
estimation.

= P(Y[X)=count(X&Y)/count(Y)

= When there are unobserved variables, we use the
expectation maximization (EM) procedure to make
the best guess for the values of the unobserved
variables given the observed ones, and readjust
the parameters of the network based on the
guesses. We find the most likely network
parameters given the observed data.

(c) Devika Subramanian, 2006

Component network learning

= We learn separate
_ - network parameters for
B R R e normal cells and diseased
low || 0.67£0.25 | 0.2340.24 | 0.10£0.24 cells for each metabolic

med 0.35+0.40 [ 0.65+0.40 | 0.00£0.01
high 0.0440.07 | 0.13£0.10 | 0.83£0.00 pr‘ocess we mOdel‘

2N SO ttwmri'hioh = Differences in parameters
oW me gl . . . .

Tow || 072035 | 0.11£0.16 | 0.14£0.92 indicate differences in the

med || 0.6840.34 | 0.09+0.13 | 0.23+£0.27 under‘Iying process.

high 0.0240.02 | 0.0240.02 | 0.964+0.02

Note that tumor cells produce lower
than normal amounts of GSH-O when
GPX levels are medium.

(c) Devika Subramanian, 2006




iRobus‘rness of EM learning

Leave-one-out Cross validation results for the GSH network

GsH
Metwork
Actual
Predicted ™ T
™ 41 5
T 9 44

(c) Devika Subramanian, 2006

Predictions from GSH
network

Oxidized Glutathione Reduced Glutathione Oxidative Stress Distribution

0.4 0.5 0.5
03 0.4 0.4
0.3 0.3

0.2
0.2 0.2
0.1 0.1 0.1
0 0

normal tumor normal tumor normal tumor

We can make predictions about metabolite levels from the

two learned networks. It is remarkable that we can predict that

the level of oxidative stress in tumor cells is much higher in

tumor cells using networks learned from the gene expression data alone!
(c) Devika Subramanian, 2006
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i Bayesian network learning

= Computationally intensive.
= Require lots of data.

= Dynamical Bayesian networks can represent
feedback loops and deal with temporal data.

= Dynamical Bayesian networks are
generalizations of Hidden Markov Models!

(c) Devika Subramanian, 2006

i Learning network structure

= Find the network structure that has
maximum likelihood with respect to
the data

= Find G that maximizes P(G|D).

(c) Devika Subramanian, 2006
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i The Bayesian approach

P& | D) < P(D| &)P(&)

Key idea: Use P(G/D) to evaluate a network
given a particular microarray data seft.

(c) Devika Subramanian, 2006

i Learning network structure

* The structure (G) learning problem is NP-
hard => heuristic search for best model
must be applied, generally bring out a
locally optimal network.

« It turns out, that richer structures give

higher likelihood P(D|G) to the data (adding
an edge to the graph is always preferable).

(c) Devika Subramanian, 2006
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i Learning structure

4> 8D
¢ > e €D
« If we add B to Parents(C) , we have more parameters

to fit > more freedom >

* But we prefer simpler (more explanatory) networks
(Occam's razorl!)

* Therefore, practical scores of Bayesian Networks
compensate for the likelihood improvement by
imposing a penalty on complex networks.

(c) Devika Subramanian, 2006

i Local search

We change one edge and evaluate the gains
made by this change

Initial structure 6 Neighboring structures G’
A—@B A.B A-.B
¢ C C

(c) Devika Subramanian, 2006
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i Search algorithm recipe

= Start with a random graph 6.
Evaluate its likelihood wrt D, P(G|D).
= Until little improvement in likelihood

= Perturb structure G by adding, deleting
or reversing edge

= Accept change if likelihood improves.
= End

Randomized restarts

(c) Devika Subramanian, 2006

i Difficulty #1

= We do not have enough data to
uniquely identify a high-scoring
network.
= Exponentially many networks with the

same P(G|data) scorel!

= Solution: generate many high-scoring
network and extract common
features.

(c) Devika Subramanian, 2006
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i Evaluating networks

P(G|D)

N NNNY

Look for features common to many models

(c) Devika Subramanian, 2006

i Difficulty #2

= What space of graph perturbations to
consider?

= Solution: sparse candidate algorithm
(Friedman 1999)

= Limit potential parents to k most correlated
variables.

(c) Devika Subramanian, 2006
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Experiment

or Alpha  cdel5  cde28 Elu

Data from Spellman et al. i i s =
(Mol.Bio. of the Cell
1998).

= Contains 76 samples of
all the yeast genome:

« Different methods for
synchronizing cell-cycle
in yeast.

» Time series at few
minutes (5-20min)
intervals.

= Spellman et al.

identified 800 cell-
cycle r‘egulm‘e(d enes

¢) Dvika Subramanian, 2006

=

Gl

2

w

o
[}

=

Learned network

ey

&5,

28



The sparse data problem:
summary

¢ There are many more genes than experiments
Therefore, many different networks suit the data
well.

# Shrink the network search space. E.g., in
biological systems each gene is regulated directly
by only a few regulators.

e Don't believe the learned networks, but use them
to find reliable links between genes. (i.e., edges
that are present in all learned networks).

(c) Devika Subramanian, 2006

i Representing partial models

= Analyze the set of plausible networks and
attempt to characterize features that are
common to most of these networks.

= Features

= Markov relations: Is Yin the Markov blanket of
X?

= Order relations: Is X'an ancestor of Yin all the
networks of a given equivalence class?

(c) Devika Subramanian, 2006
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i Overview of features

= Question: Do Xand ¥ directly interact?
= Parent-child

.99 Regulator in Exporter of
confidence mating mating factor
pathway

Transcription
factor

= Hidden parent @

e L N

©0.84) —
Arginine Arginine
(c) Devika Subramanian, B@@¢nthesis Biosynthesis

i Features contd.

= Question: Given that X'and ¥ are indirectly
dependent, who mediates this dependence?

= Separator relation:
= X affects Z who in turn affects ¥
= Z regulates both X and ¥

Mating
transcriptional
regulator of
nuclear fusion

CAGAD CFUSD

Cell fusi&{) Devika Subr‘am%enlljafllfsés&’
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Separators

MAPK of cell
wall integrity
pathway

Protein of
unknown
function

Cell wall
protein

Cell wall Cell wall
protein protein

@ All pairs have high correlation

#Clustered together
(c) Devika Subramanian, 2006

Separators: intra cluster
i context

wall integrity
pathway

Protein of
unknown
function

Cell wall
protein

Cell wall Cell wall
protein protein

#SLT2: Pathway regulator, explains the dependence.

#Many signaling and regulatory proteins identified as

direct and indirect separators.
c) Devika Subramanian, 2006
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Learning networks from
expression data

‘ .. Expression ;

I > Network learning

Sub pieces of

= - interaction
- Sk o

&: hetworks

(c) Devika Subramanian, 2006

Estimating statistical
confidence in features

= To what extent does the data support
a given feature?

= An effective and relatively simple
approach for estimating confidence is
the bootstrap method.

(c) Devika Subramanian, 2006
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i The bootstrap method

m For/=1,..,m

= Re-sample with replacement Ninstances from D.

Denote by D, the resulting dataset.

= Apply the learning procedure on D, to induce a
network structure &.

= For each feature 7 of interest calculate
conf(f):%nz:":lf(Gi)

= where {6)is1if fisa feature in 6,and 0
otherwise.

(c) Devika Subramanian, 2006

i Bootstrap illustrated

C(f) is the confidence D o &
in a feature. D, > D
e/
& >
@ resample D, ‘ é‘f
~__

(c) Devika Subramanian, 2006
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Improving statistical
i significance

Sparse Data
= Small number of samples

= "Flat posterior” -- many networks fit the
data.

Solution
= estimate confidence in network features

= E.g., two types of features

= Markov neighbors: X directly interacts with ¥
(have mutual edge or a mutual child)

= Order relations: Xis an ancestor of Y

(c) Devika Subramanian, 2006

b Normalization, Preprocess
3 Discretization
Joee0igla | see
e -o. v
Bayesian Network Learn
Learning Algorithm, model
+ Bootstrap
v v : v v
Feature
Markov Edge Separator ANCESIOT] o xtraction

(c) Devika Subramanian, 2006

34



Bayesian network learned

_‘L for yeast

R
ISTEM ) {8TEN

Hartemink et al, Combining Location and Expression Data
for Principled Discovery of Genetic Regulatory Network
Models,

PSB 2002 psb.stanford.edu/psb-online

(c) Devika Subramanian, 2006

COMPUTERS AND SCIENCE

[

Fig. 1. Expression data can be visualized directly and as genetic regull
networks. (A) shows the hierarchical clustering of 32 genes in 3
cerevisiae expression experiments (240 shown) and (B) shows hoy
data can be used to automatically reconstruct a tentative genetic

latory network with graphical models. Genes expressed only in MATH
are colored dark blue (MFA1, MFA2, STE2, STE6, AGA2, and BAR1);

expressed only in MATa cells are colored red (MFALPHA1, MFALH

STE3, and SAG1); genes whose promoters are bound by Ste12 are co
[STE12 CADT ACAT C1ICT dLLIc2. o dicg £
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i Permutation testing

#Running the procedure on randomized data where the
order of values for each gene is reshuffled.

#Histograms of number of Markov features at each
confidence level

I ER |

O‘Or'iginal

Randomized Data
Data

(c) Devika Subramanian, 2006

Biological Analysis of order
relations

Score in Experiment

Gene/ORF | Multi ial | Gaussi Noves

MCI 550 525 Mitotic Chromosome Determinant.null mutant is inviable

MSH6 292 508 Required for mismatch repair in milosis and meiosis

512 R 497 cell wall maintenance, chitin synthesis

CLN2 497 454 Role in cell cycle START, null mutant exhibits G1 arrest

YLRIZIC 531 448 Contains forkheaded associated domain, thus possibly nuclear

RFAZ 456 423 Involved in nucleotide excision repair, null mutant is inviahle

RSR1 352 395 GTP-binding proicin of the RAS family involved in bud site
selection

ChC45 - 394 Required for initiation of chromosomal replication, null mutant
lethal

RADS3 6l ELE] Cell eycle contral, checkpoint function, null mutant lethal

CchCs 209 353 Cell eycle control, required for exit from mitosis, null mutant
lethal

POL30D 376 21 Required for DNA replication and repair. null mutant is
inviahle

YOXI 400 291 Homeodomain protein

SRO4 463 239 Involved in cellular polarization during budding

CLNI 34 - Role in cell cyele START, null mutant exhibits G1 arrest

YBROROW 298 -

(c) Devika Subramanian, 2006
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Biological Analysis of Markov
relations

Confidence | Gene | Gene 2 Notes

1.0 YRLI6IW-PIR3 | YKLIGC-PIR] | Close locality on chromosome

L9835 PRY2 YKROI1ZC Close locality on chromosome

0983 MCID1 MSH6 Both hind 10 DNA during mitosis

0.98 PHOT1 PHOI2 Both nearly identical acid phosphatases

0975 HHTI HTB1 Both are Histones

0.97 HTB2 HTAI Both are Histones

0.94 YNLOSTW YNLOSSC Close locality on chromosome

0.94 YHRI43W CTS1 Homuolog w EGT2 cell wall control, both involved in
Cylokinesis

0.92 YOR263C YOR264W Close locality on chromosome

0.91 YGROSG SIC1 Homolog o mammalian nuclear ran protein, both in-
volved in nuclear function

0.9 FARI ASHI Both part of a mating 1ype switch, expression
uncorrelated

(.89 CLN2 SVSI1 Function of SVS1 unknown

[IR.1.] YDROZIW NCE2 Homolog 1w transmembrame proteins suggest both
invalved in protein secretion

(.86 STE2 MFA2 A mating factor and receptor

0.85 HHFI HHF2 Both are Histones.

0.85 METI0 ECMI7 Both are sulfite reductases

0.85 Cpey RAD27 Both participate in Okazaki fragment processing

\L) UEVIRU Suurununiiurn, cuvo

Assembling subnetworks

s Automatic reconstruction

= Goal: Dense sub-network with highly confident
pair-wise features

= Score: Statistical significance
= Search: High scoring sub-networks
= Advantages
= Global picture
= Structured context for interactions
= Incorporate mid-confidence features

(c) Devika Subramanian, 2006
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‘l “*Expression - Nprmal_lzat_lon, Preprocess
a3 Discretization
L ] 9 Qta - ces
. -o. - . V
Bayesian Network
Learning Algorithm, Learn
Mutation modeling model
+ Bootstrap
1
v v v v Feat
| Markov | Edge | Separator | Ancestor eature
| | | | extraction
Feature

Reconstruct Sub-Networks

p assembly

i Results

= 6 well structured sub-networks representing
coherent molecular responses

= Mating

= Iron metabolism

= Low osmolarity cell wall integrity pathway
= Stationary phase and stress response

= Amino acid metabolism, mitochondrial function
and sulfate assimilation

= Citrate metabolism

= Uncovered regulatory, signaling and metabolic
interactions

(c) Devika Subramanian, 2006




Two branches:

*Cell fusion Transcriptional regulator
RZSUH' *Outgoing Mating Signal | of nuclear fusion

Genes that participate
in Cell fusion

We missed: STE12 (main TF) Fus3 (Main MAPK) is marginal

T-Lymphocyte Data (Sachs 2005)

I
Conditions (96 well format) 12 Color Flow Cytometry

Datasets
of cells

“]_Ln_I_LH_I_I_I_I_[L
Loopnlollan.

> - condition a’

“]—I—[LLLD—I—L'J—[L - condition b’

@ I i 1 ~condition..n’
‘_D_I_D_I_LD_I_L._I_L
g /

= Primary human T-Cells = 9 phosphoproteins, 2
= 9 conditions phospolipids
= (6 Specific interventions) = 600 cells per condition

= 5400 data-points
From Sachs 2005

(c) Devika Subramanian, 2006

perturbation n
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i Using correlations

EkD—CKO
T PGB

7\
A
RN X FH
Nr o Za%,
‘A X

QO Phospho-Proteins
OPhospho-Lipids

N

771
J
VNN
A“'

From Sachs 2005

(c) Devika Subramanian, 2006

i Statistical Dependencies

<

Phospho A ||

Phospho B

But, how can statistical dependencies
determine directionality?

SGC hS 2005 (c) Devika Subramanian, 2006
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The Power of Interventions

™
- 120
| p
ol
< 001—.-‘_'_
o |,
< 144
q e
o
-y tas
a- 1w
o
R
A—>B
For Sachs 2005

® No Manipulations
ey A inhibited
® B inhibited

40 50 60 0 8 80 w0

Phospho B

(c) Devika Subramanian, 2006

|Dismissi

Phospho B

Sachs 2005

ng Edges

Phospho C '
Phospho C

" PhosphoB Phospho A

Edges A->B and B->C explain
dependence of A and C
dismissing the edge
between them

(c) Devika Subramanian, 2006

41



Context Specificity

20 . |

Phospho D

Phospho B

B and D seem unrelated

Relationship is revealed
by considering
simultaneous
measurement of E

Demonstrates the need
for simultaneous
measurements of
variables

Pairwise computational
analysis (e.g.
correlations)
insufficient

(c) Devika Subramanian, 2006

Indirect Edges
e

/[
ey O
&

Phospho C

N
oD

Phospho A

What would happen if B was not measured?

(c) Devika Subramanian, 2006
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Summary

\ Conditions (96 well format) ‘ ‘ Multiparameter Flow Cytometry ‘

berturbation b

e
Datasets
of cells

perturbation n
‘_I_l_n_l_l_D_I_LI_I_L
o E 7

dlinfluencef Bayesnan
agram 3 Network
measure An aly sis

. variables varlables

SGChS 2005 (c) Devika Subramanian, 2006

- condition a’

- condition b’
. ~condition..n’
\\

Inferred Network

O Phospho-Proteins
O Phospho-Lipids
(O Perturbed in data

(c) Devika Subramanian, 2006
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How good is the learned network?

O Phospho-Proteins
O Phospho-Lipids
(O Perturbed in data

(c) Devika Subramanian, 2006

The need for cytometry data

= Direct phosphorylation:

Difficult to detect using other forms of
high-throughput data:

-Protein-protein interaction data

-Microarrays

(c) Devika Subramanian, 2006
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How good is the learned network?

O Phospho-Proteins
O Phospho-Lipids
(O Perturbed in data

Indirect Signaling

(c) Devika Subramanian, 2006

Ability to handle missing nodes

= Indirect signaling

@D D@D

| Not measured |

Indirect connections can be found even when the
infermediate molecule(s) are not measured

(c) Devika Subramanian, 2006
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i Indirect signaling

= Is this a mistake?

ED—GED—CD

The real picture

@@@@

Phospho-protein specific

More than one pathway of influence

(c) Devika Subramanian, 2006

How good is the learned network?

O Phospho-Proteins
@ O Phospho-Lipids
/ (O Perturbed in data
————Expected Pathwa
PKA P Y
Plcy §

} | _44/8) . 15/17 Classic

PIP2 Akt

(c) Devika Subramanian, 2006
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How good is the learned network?
_______________ _ O Phospho-Proteins

,/’ /,/ ___________ O Phospho-Lipids

i % - 7 ‘@ O Perturbed in data

P Expected Pathway
:'I " Reported
:" Reversed
@ = = = Missed

= 15/17 Classic

« 17/17
Reported

= 3 Missed

(c) Devika Subramanian, 2006

Prediction
J
-

= Erk influence on Akt
previously reported in
colon cancer cell lines

Predictions:
= Erkl1/2 influences Akt

= While correlated, Erkl/2
does not influence PKA

(c) Devika Subramanian, 2006
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Validation

k1/Erk2
= Select transfected cells

= Measure Akt and PKA control, stimulated
Erkl siRNA, stimulated

T T T T T T T T T
10° 10t 102 108 104 10° 10* 102 108 104

P-Akt .. tika Subran P-PKA

Summary

= Proof of principle: Automated reconstruction
of signaling pathway in human cells

= Advantages:
= In-vivo
= Directed edges (causality)
s Detects direct and in-direct influences
= Single cell
= Choose sub-populations of interest

= Disadvantage:

= Static, cells fixed and stained
- a-cyc“c SClChS et al, Science 2005
(c) Devika Subramanian, 2006
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Spectrum of modeling tools in
isys’rems biology

'-_’Experimental
i Data

S SVMs

u (c) Devika Subramanian, 2006
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