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Inferring regulatory, 
signaling & metabolic 
networks from data

Devika Subramanian
Comp 470
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Networks
Regulatory network: network of control 
decisions used to turn genes on/off.
Signaling network: interactions among 
genes, gene products and small molecules 
that activate cellular processes.
Metabolic network: network of proteins 
that synthesize and breakdown cellular 
molecules.
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Regulators
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Genetic regulatory network of
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From expression data to 
gene regulatory networks

Yeast cell cycleMicroarray data

(c) Devika Subramanian, 2006

From flow cytometry data to 
signaling networks

High throughput data
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The galactose pathway (manually 
discovered)

T. Ideker, et al., Science 292 (May 4, 2001) 929-934.

(c) Devika Subramanian, 2006

The glutathione metabolism
An important
metabolic
process; 
detoxification
in cells. Known
to be disrupted
in several
cancers.

Kegg pathway
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Outline
The problem of learning regulatory, signaling and 
metabolic networks from data
A quick intro to Bayesian networks
Algorithms for learning Bayesian networks from 
data
Examples

Glutathione metabolism from humans (expression data)
Regulatory network from yeast cell cycle (expression 
data)
T-cell signaling from humans (flow cytometry data)

(c) Devika Subramanian, 2006

Challenges
The cell is a complex stochastic domain: 
signal transduction, metabolic and 
regulatory pathways all interconnected.
Pathways are controlled by combination of 
many mechanisms.
We only observe mRNA levels and/or 
phospho-lipid levels.
Many interactions are not directly 
observed at the mRNA level
Measurements are noisy.
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Some initial approaches
Classification of expression data

Reveals genes that are differentially 
expressed.
Disadvantage: does not reveal structural 
relationships between genes.

Expression
data

GSTM
GSTP1
ALDH4A1
GCLC
MYC
P53
CADH
TRO
PTGS1
TBXAs1

GENE LIST

(c) Devika Subramanian, 2006

Some initial approaches
Clustering 
techniques

Many interesting 
clusters of co-
regulated genes
No system-level 
insight.
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Some initial approaches
Boolean networks

Deterministic models of interactions between 
genes.
Disadvantage: deterministic. We need 
stochastic models for representing 
interactions.

(c) Devika Subramanian, 2006

Why probabilistic models?
Gene regulation occurs at many stages:

pre-transcriptional (chromatin structure)
transcription initiation
RNA editing (splicing) and transport
Translation initiation
Post-translation modification
RNA & Protein degradation

All these processes are stochastic!
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Why Bayesian networks?
The important science/technology to come 
out of AI in the last 15 years.
Underlies all important applications today.
Frames every question as the estimation of 
a conditional probability

P(disease/problem|set of symptoms)
P(email is spam|email text+header)
P(hurricane will hit place X|movement history)
P(sentence|acoustic signal)
P(regulatory network|gene exp data)

(c) Devika Subramanian, 2006

Example: Akt pathway
Random variables: Akt, BAD, caspase-9

Conditional independencies:
P(BAD and caspase-9|AKT) =P(BAD|Akt)P(Caspase-9|AkT)

AkT

BAD Caspase-9

P(Caspase-9=1|Akt=1)=0.1
P(Caspase-9=1|Akt=0)=0.9

P(BAD=1|Akt=1) = 0.9
P(BAD=1|Akt=0)= 0.1

P(Akt=1)=0.05
2+2+1
probabilities
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Another example

Protein A

Protein B

Protein C Protein D

Protein E P(B=1|A=0) = 0.8
P(B=1|A=1) = 0.3

If Protein A is 
low(0), Protein B 
is high(1) with 
probability 0.8

Adapted from
Sachs, 2005

(c) Devika Subramanian, 2006

Bayesian networks: the model
A Bayesian network B = (V,E) is a directed acyclic 
graph in which each node in V is annotated with 
quantitative probability information.

A set V of random variables are the nodes of 
the network. They can be continuous or 
discrete.
If there is an edge from node X to node Y in E, 
then X is said to be the parent of Y.
Each node X in V has a conditional probability 
distribution P(X|Parents(X)) associated with it.



10

(c) Devika Subramanian, 2006

Segue
… to an old example from Pearl 1986.
Illustrates the major kinds of 
stochastic dependencies that can be 
modeled using Bayesian networks

(c) Devika Subramanian, 2006

A simple Bayesian network

Alarm

MaryCallsJohnCalls

EarthquakeBurglary
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Semantics of Bayesian 
networks

The topology of the network reflects a set 
of conditional independence statements.

Burglary and Earthquake directly affect the 
probability of the alarm going off, but whether 
or not John or Mary calls depends on the alarm. 
John and Mary do not directly perceive 
burglary or minor earthquakes.
JohnCalls is conditionally independent of 
MaryCalls given Alarm.

(c) Devika Subramanian, 2006

Bayesian network with CPTs

Alarm

MaryCallsJohnCalls

EarthquakeBurglary

P(B)=0.001 P(E)=0.002

P(A|B,E)=0.95
P(A|B,not E)=0.95
P(A|not B,E)=0.29
P(A|not B, not E)=0.001

P(J|A)=0.9
P(J|not A)=0.05

P(M|A)=0.7
P(M|not A)=0.01

Specifying the
joint distribution
requires 31 probabilities,
here we only
specify
10.
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Computing joint probability 
distributions

Any entry in the joint probability 
distribution can be calculated from the 
Bayesian network.
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Computing joint probabilities
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P(Burglary|Alarm) = 0.376
P(Burglary|Alarm,Earthquake) = 0.003
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Summary of dependency types

Common cause

A CB

Intermediate gene

B

A C

A

C

B

Common effects

(c) Devika Subramanian, 2006
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Conditional probability 
distributions

Multinomial model
Discrete values

Linear Gaussian model
P(X|u1, u2, …, uk) = N(a0 + Σiaiui, σ2)

(c) Devika Subramanian, 2006

Modeling genetic networks
Variables of interest:

Expression levels of genes
Concentration levels of proteins 
Exogenous variables: Nutrient levels, 
Metabolite Levels, Temperature
Phenotype information 
…

Bayesian Network Structure:
Capture dependencies among these variables
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Advantages of Bayesian 
networks

Flexible representation of (in)dependency 
structure of multivariate distributions and 
interactions.
Natural for modeling global processes with 
local interactions.
Clear probabilistic semantics.
Natural for statistical confidence analysis
of results and answering of queries.
Stochastic in nature: models stochastic 
processes & deals well with noise in 
measurements.

(c) Devika Subramanian, 2006

Learning Bayesian networks

Expression
data

DiscretizationDiscretization

Bayesian Network 
Learning Algorithm
Bayesian Network 
Learning Algorithm

Preprocess

Learn 
model

Gene A

Gene C Gene D

Gene E

Gene B
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Need for discretization
The expression measurements are real 
numbers.

We need to discretize them in order to learn 
general conditional probability distributions. 
This step entails a loss of information.
If we don’t discretize, we must assume some 

specific type of conditional probability 
distribution (like “linear Gaussian”), and this 
assumption causes loss of modeling fidelity.

(c) Devika Subramanian, 2006

Learning Bayesian Models
Using gene expression data D, find the Bayesian network G that 
is most likely given the data, i.e. G that maximizes P(G|D).
Two cases

Graph structure is known; the conditional probability distributions 
are unknown.

Recovering optimal conditional probability distributions when the graph 
is known is “easy”. 

Graph structure and the conditional probability distributions are 
unknown. 

Recovering optimal graph structure is NP-hard.
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Learning CPTs

A

B

C

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

Known structure!
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Learning CPTs

A

B

C

P(B=‘On’|A=‘On’) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

5/6 = 0.83
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Learning CPTs
A

B

C

P(B=‘On’|A=‘On’) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

P(B=‘Off’|A=‘Off’) = 0.8

4/5 = 0.8
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Learning CPTs
A

B

C

P(B=‘On’|A=‘On’) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

P(B=‘Off’|A=‘Off’) = 0.8

P(C=‘On’|A=‘On’) = 0.66

4/6 = 0.66



19

(c) Devika Subramanian, 2006

Learning CPTs

A

B

C

P(B=‘On’|A=‘On’) = 0.83

A B C

On On On

On Off Off

On On Off

On On On

On On On

On On On

Off Off Off

Off On On

Off Off Off

Off Off Off

Off Off Off

P(B=‘Off’|A=‘Off’) = 0.8

P(C=‘On’|A=‘On’) = 0.66

4/5 = 0.8

P(C=‘On’|B=‘On’) = 0.8
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Challenges
Ab initio learning of cellular process is 
difficult – data is extremely limited (few 
hundred samples).
Data is noisy; measurement and 
interpretation problems, as well as 
problems caused by tissue heterogeneity.
Therefore, we need to incorporate 
available knowledge of biological processes; 
the role of expression data is to refine 
known models.
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Modeling cellular processes:  
topology of glutathione network

Three alternate synthesis 
pathways for GSH-R: from 
GSH-O by GSR, from GSH-
O by GPX4, and 
independently from GSS. 
Edges here are not causal; 
edge directions chosen to

Keep network acyclic
Make nodes have no more 
than two to three parents.

Network is an alternate 
but correct factoring of 
the full joint distribution 
on expression levels.

GPX4

GSH-O

GSH-R

GSS

A portion of the GSH network

GSR

(c) Devika Subramanian, 2006

Modeling cellular processes: 
the quantitative parameters

Our models have a 
quantitative component. 
Each node has a conditional 
probability distribution 
associated with it.
These models are learned 
from data!

GPX4

GSH-O

GSH-R

GSS

A portion of the GSH network

GSR

Conditional
Probability
Table
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Learning CPTs from data
To learn a CPT of the form P(Y|X), where Y and X 
are both observed, we can use maximum likelihood 
estimation.

P(Y|X)=count(X&Y)/count(Y)
When there are unobserved variables, we use the 
expectation maximization (EM) procedure to make 
the best guess for the values of the unobserved 
variables given the observed ones, and readjust 
the parameters of the network based on the 
guesses.  We find the most likely network 
parameters given the observed data.

(c) Devika Subramanian, 2006

Component network learning
We learn separate 
network parameters for 
normal cells and diseased 
cells for each metabolic 
process we model.
Differences in parameters 
indicate differences in the 
underlying process.

Note that tumor cells produce lower
than normal amounts of GSH-O when
GPX levels are medium.
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Robustness of EM learning
Leave-one-out Cross validation results for the GSH network

(c) Devika Subramanian, 2006

Predictions from GSH 
network

We can make predictions about metabolite levels from the 
two learned networks. It is remarkable that we can predict that 
the level of oxidative stress in tumor cells is much higher in
tumor cells using networks learned from the gene expression data alone!
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Bayesian network learning
Computationally intensive. 
Require lots of data.
Dynamical Bayesian networks can represent 
feedback loops and deal with temporal data. 
Dynamical Bayesian networks are 
generalizations of Hidden Markov Models!

(c) Devika Subramanian, 2006

Learning network structure
Find the network structure that has 
maximum likelihood with respect to 
the data

Find G that maximizes P(G|D).
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The Bayesian approach

)()|()|( GPGDPDGP ∝

Key idea: Use P(G|D) to evaluate a network 
given a particular microarray data set.

Marginal 
Likelihood

Prior over 
Networks

Network 
Posterior

(c) Devika Subramanian, 2006

Learning network structure
• The structure (G) learning problem is NP-

hard => heuristic search for best model 
must be applied, generally bring out a 
locally optimal network.

• It turns out, that richer structures give 
higher likelihood P(D|G) to the data (adding 
an edge to the graph is always preferable).
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Learning structure
A

C

BA

C

B

• If we add B to Parents(C) , we have more parameters 
to fit more freedom 

• But we prefer simpler (more explanatory) networks 
(Occam’s razor!)

• Therefore, practical scores of Bayesian Networks 
compensate for the likelihood improvement by 
imposing a penalty on complex networks.

(c) Devika Subramanian, 2006

We change one edge and evaluate the gains 
made by this change

B

C

A B

C

A B

C

A
Initial structure G Neighboring structures G’

Local search
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Search algorithm recipe
Start with a random graph G. 
Evaluate its likelihood wrt D, P(G|D).
Until little improvement in likelihood

Perturb structure G by adding, deleting 
or reversing edge
Accept change if likelihood improves.

End
Randomized restarts

(c) Devika Subramanian, 2006

Difficulty #1
We do not have enough data to 
uniquely identify a high-scoring 
network.

Exponentially many networks with the 
same P(G|data) score!

Solution: generate many high-scoring 
network and extract common 
features.
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Evaluating networks

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

P(G|D)

Look for features common to many models
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Difficulty #2
What space of graph perturbations to 
consider?
Solution: sparse candidate algorithm 
(Friedman 1999)

Limit potential parents to k most correlated 
variables.
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Experiment
Data from Spellman et al.

(Mol.Bio. of the Cell 
1998).
Contains 76 samples of 
all the yeast genome:

Different methods for 
synchronizing cell-cycle 
in yeast.
Time series at few 
minutes (5-20min) 
intervals.

Spellman et al.
identified 800 cell-
cycle regulated genes.

(c) Devika Subramanian, 2006

Learned network
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The sparse data problem: 
summary

There are many more genes than experiments
Therefore, many different networks suit the data 
well. 
Shrink the network search space. E.g., in 
biological systems each gene is regulated directly 
by only a few regulators.

Don’t believe the learned networks, but use them 
to find reliable links between genes. (i.e., edges 
that are present in all learned networks).

(c) Devika Subramanian, 2006

Representing partial models
Analyze the set of plausible networks and 
attempt to characterize features that are 
common to most of these networks.
Features

Markov relations: Is Y in the Markov blanket of 
X?
Order relations: Is X an ancestor of Y in all the 
networks of a given equivalence class?
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Overview of features
Question: Do X and Y directly interact?

Parent-child

Hidden parent

(0.91) 
SST2 STE6 SST2 STE6

Regulator in 
mating 

pathway

Exporter of 
mating factorconfidence

ARG5 ARG3
(0.84) ARG3 ARG5

GCN4 

Arginine
Biosynthesis

Transcription 
factor

Arginine
Biosynthesis

(c) Devika Subramanian, 2006

Features contd.
Question: Given that X and Y  are indirectly 
dependent, who mediates this dependence?
Separator relation:

X  affects Z  who in turn affects Y
Z  regulates both X  and Y

AGA1 FUS1

KAR4

Mating 
transcriptional 

regulator of 
nuclear fusion

Cell fusion Cell fusion
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Separators

SLT2

CRH1
Cell wall 
protein

MAPK of cell 
wall integrity 

pathway

YPS3
Cell wall 
protein

YPS1
Cell wall 
protein

SLR3
Protein of 
unknown 
function

All pairs have high correlation

Clustered together

(c) Devika Subramanian, 2006

Separators: intra cluster 
context

SLT2

CRH1
Cell wall 
protein

MAPK of cell 
wall integrity 

pathway

YPS3
Cell wall 
protein

YPS1
Cell wall 
protein

SLR3
Protein of 
unknown 
function

+

+

SLT2: Pathway regulator, explains the dependence.
Many signaling and regulatory proteins identified as 

direct and indirect separators.
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Learning networks from 
expression data 

Expression
data

Sub pieces of 
interaction 
networks

Network learning

(c) Devika Subramanian, 2006

Estimating statistical 
confidence in features
To what extent does the data support 
a given feature?
An effective and relatively simple 
approach for estimating confidence is 
the bootstrap method.
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The bootstrap method
For i = 1, …, m

Re-sample with replacement N instances from D. 
Denote by Di the resulting dataset.
Apply the learning procedure on Di to induce a 
network structure G.

For each feature f of interest calculate

where f(G) is 1 if f is a feature in G, and 0 
otherwise.

∑=
=

m

i iGfmf
1

)(1)(conf
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Bootstrap illustrated

D resample

resample

resample

D1

D2

Dm

...

Learn

Learn

Learn

E

R

B

A

C

E

R

B

A

C

E

R

B

A

C

{ }∑
=

∈=
m

i
iGf

m
fC

1
11)(

C(f) is the confidence
in a feature.
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Improving statistical 
significance
Sparse Data

Small number of samples
“Flat posterior” -- many networks fit the 
data.

Solution
estimate confidence in network features
E.g., two types of features

Markov neighbors: X directly interacts with Y 
(have mutual edge or a mutual child)
Order relations: X is an ancestor of Y

(c) Devika Subramanian, 2006

Summary of method

Normalization,
Discretization 
Normalization,
Discretization 

MarkovMarkov SeparatorSeparatorEdgeEdge AncestorAncestor

Bayesian Network 
Learning Algorithm,

+ Bootstrap

Bayesian Network 
Learning Algorithm,

+ Bootstrap

Preprocess

Learn 
model

Feature
extraction

Expression
data
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Bayesian network learned 
for yeast 

Hartemink et al, Combining Location and Expression Data 
for Principled Discovery of Genetic Regulatory Network 

Models, 
PSB 2002 psb.stanford.edu/psb-online

(c) Devika Subramanian, 2006

A counter example of clustering analysis
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Permutation testing

Original 
Data

Randomized Data

Running the procedure on randomized data where the 
order of values for each gene is reshuffled.

Histograms of number of Markov features at each 
confidence level

(c) Devika Subramanian, 2006

Biological Analysis of order 
relations
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Biological Analysis of Markov 
relations

Multinomial experiment

(c) Devika Subramanian, 2006

Assembling subnetworks
Automatic reconstruction

Goal: Dense sub-network with highly confident 
pair-wise features
Score: Statistical significance
Search: High scoring sub-networks

Advantages
Global picture
Structured context for interactions
Incorporate mid-confidence features
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Learning subnetworks

Normalization,
Discretization 
Normalization,
Discretization 

MarkovMarkov SeparatorSeparatorEdgeEdge AncestorAncestor

Bayesian Network 
Learning Algorithm,
Mutation modeling

+ Bootstrap

Bayesian Network 
Learning Algorithm,
Mutation modeling

+ Bootstrap

Preprocess

Learn 
model

Feature
extraction

Reconstruct Sub-NetworksReconstruct Sub-Networks Feature
assembly

Expression
data
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Results
6 well structured sub-networks representing 
coherent molecular responses

Mating
Iron metabolism 
Low osmolarity cell wall integrity pathway
Stationary phase and stress response
Amino acid metabolism, mitochondrial function 
and sulfate assimilation 
Citrate metabolism 

Uncovered regulatory, signaling and metabolic 
interactions
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Results
KAR4

AGA1PRM1TEC1

SST2

STE6

KSS1NDJ1

FUS3AGA2

YEL059W

TOM6 FIG1YLR343W

YLR334C MFA1

FUS1

We missed: STE12 (main TF), Fus3 (Main MAPK) is marginal

Two branches:
•Cell fusion
•Outgoing Mating Signal

Transcriptional regulator 
of nuclear fusion

Genes that participate
in Cell fusion

(c) Devika Subramanian, 2006

Datasets  
of cells

• condition ‘a’
• condition ‘b’
•condition…‘n’

Ra
f
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1/
2
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k

p3
8

PK
A

PK
C

Jn
k

PI
P2

PI
P3

Pl
cγ

Ak
t

12 Color Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (96 well format)

T-Lymphocyte Data (Sachs 2005)

Primary human T-Cells
9 conditions 

(6 Specific interventions)

9 phosphoproteins, 2 
phospolipids
600 cells per condition

5400 data-points
From Sachs 2005
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Using correlations
PKC

Raf

Erk

Mek

Plcγ

PKA

Akt

Jnk

P38

PIP2
PIP3

Phospho-Proteins
Phospho-Lipids

From Sachs 2005

(c) Devika Subramanian, 2006

Statistical Dependencies

But, how can statistical dependencies 
determine directionality?

A

B

C D

E

Ph
os

ph
o

A

Phospho B

Sachs 2005
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The Power of Interventions

A B

No Manipulations
A inhibited
B inhibited

Ph
os

ph
o

A

Phospho B

B A

B A

For Sachs 2005

(c) Devika Subramanian, 2006

Dismissing Edges

Phospho A Phospho B

Ph
os

ph
o

B

Ph
os

ph
o

C

Phospho A

Ph
os

ph
o

C

A

B

C D

E

Edges A->B and B->C explain 
dependence of A and C  

dismissing the edge 
between them 

Sachs 2005
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Context Specificity 

Phospho B

Ph
os

ph
o

D

E is high
B and D seem unrelated
Relationship is revealed 
by considering 
simultaneous 
measurement of E
Demonstrates the need 
for simultaneous 
measurements of 
variables
Pairwise computational 
analysis (e.g. 
correlations) 
insufficient

(c) Devika Subramanian, 2006

Indirect Edges

What would happen if B was not measured?

A

C D

B E
Phospho A

Ph
os

ph
o

C
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Summary

Influence     
diagram of 
measured 
variables

Bayesian 
Network  
Analysis

Datasets  
of cells

• condition ‘a’
• condition ‘b’
•condition…‘n’

Ra
f

M
ek

1/
2

Er
k

p3
8

PK
A

PK
C

Jn
k

PI
P2

PI
P3

Pl
cγ

Ak
t

Multiparameter Flow Cytometry

perturbation a

perturbation n

perturbation b

Conditions (96 well format)

Sachs 2005
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PKC

Raf

P44/42

Mek

Plcγ

PKA

Akt

Jnk P38

PIP2

PIP3

Phospho-Proteins
Phospho-Lipids
Perturbed in data

Inferred Network
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PKC

Raf

P44/42

Mek

Plcγ

PKA

Akt

Jnk P38

PIP2

PIP3

Phospho-Proteins
Phospho-Lipids
Perturbed in data

How good is the learned network?

Direct phosphorylation

(c) Devika Subramanian, 2006

The need for cytometry data

Direct phosphorylation:
Mek

Difficult to detect using other forms of 
high-throughput data:

-Protein-protein interaction data

-Microarrays

Erk
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PKC
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P44/42
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PKA

Akt

Jnk P38
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How good is the learned network?

Indirect Signaling

(c) Devika Subramanian, 2006

Ability to handle missing nodes

Indirect signaling

PKC Jnk PKC Mapkkk Jnk

Not measured

Mapkk

Indirect connections can be found even when the 
intermediate molecule(s) are not measured
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Indirect signaling

Is this a mistake?

The real picture

Phospho-protein specific
More than one pathway of influence

PKC Raf Mek

PKC Rafs259 Mek

Rafs497

Ras

(c) Devika Subramanian, 2006

PKC
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How good is the learned network?
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PKC

Raf

P44/42

Mek

Plcγ

PKA

Akt

Jnk P38

PIP2

PIP3

Expected Pathway

Reported

Missed

15/17 Classic
17/17 
Reported
3 Missed

Reversed

Phospho-Proteins
Phospho-Lipids
Perturbed in data

How good is the learned network?

(c) Devika Subramanian, 2006

Prediction

Erk influence on Akt
previously reported in 
colon cancer cell lines

Predictions:
Erk1/2 influences Akt
While correlated, Erk1/2 
does not influence PKA

PKC

Raf

Erk1/2

Mek

PKA

Akt
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Validation

control, stimulated
Erk1 siRNA, stimulated

SiRNA on Erk1/Erk2
Select transfected cells
Measure Akt and PKA

100 101 102 103 104

APC-A: p-akt-647 APC-A
100 101 102 103 104

PE-A: p-pka-546 PE-A
P-Akt P-PKA

P=9.4e-5 P=0.28

(c) Devika Subramanian, 2006

Summary
Proof of principle: Automated reconstruction 
of signaling pathway in human cells
Advantages:

In-vivo
Directed edges (causality)
Detects direct and in-direct influences
Single cell
Choose sub-populations of interest

Disadvantage:
Static, cells fixed and stained
a-cyclic Sachs et al, Science 2005
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d[R]
dt = k1[LR]

    − k2[R][L] 
         ...

Spectrum of modeling tools in 
systems biology

S
u

SVMs


