Inferring regulatory, signaling & metabolic networks from data

> Devika Subramanian Comp 470

Little is known about the design principles¹⁻¹⁰ of transcrip-tional regulation networks that control gene expression in cells. Recent advances in data collection and analysis^{2,11,12}, however, are generating unprecedented amounts of informa-tion about gene regulation networks. To understand these complex wiring diagrams^{1-10,13}, we sought to break down such networks into basic building blocks². We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of intercon-pations that recur in many different nets of a network at fea networks. We define 'network motifs' as patterns of intercon-nections that recur in many different parts of a network at fre-quencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized reg-ulation networks, that of direct transcriptional interactions in *Escherichia coll^{3,8}*. We find that much of the network is com-posed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determin-ing gene expression, such as generating temporal expression ing gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organ-

view of the entire known transcriptional network of the organ-ism. This approach may help define the basic computational elements of other biological networks. We compiled a data set of direct transcriptional interactions between transcription factors and the operons they regulate (an operon is a group of contiguous genes that are transcribed into a single mRNA molecule). This database contains 577 interac-tions and 424 operons (involving 116 transcription factors); it was formed on the basis of on an existing database (Regu-IonDB)^{3,14}. We enhanced RegulonDB by an extensive interature search, adding 35 new transcription factors, including alterna-tive of-factors (subunits of RNA polymerase that confer recogni-tion of specific promoter sequences). The data set consists of established interactions in which a transcription factor directly binds a regulatory site.

The transcriptional network can be represented as a directed graph, in which each node represents an operon and edges repre-sent direct transcriptional interactions. Each edge is directed

Fig. 1 Network motifs found in the *E. col*/ transcriptional regulation network. Symbols representing the motifs are also shown, a, Feedforward loop: a tran-cription factor. Yequiates a second transcription factor Y, and both jointly regulate one or more operont Z₁...Z_n, b, Example of a feedforward loop (Lara-binose utilization), CSIM motifs angle transcription factor, X, regulates a set of operons Z₁...Z_n, X is usually autoregulatory. All regulations are of the same

_			
Learning CPTs	Α	В	С
	On	On	On
	On	Off	Off
	On	On	Off
	On	On	On
	On	On	On
	On	On	On
	Off	Off	Off
Known structure	Off	On	On
	Off	Off	Off
	Off	Off	Off
	Off	Off	Off
(c) Devika Subramanian, 2006	•		

Learning CPTs	A	В	С	
	On	On	On	
P(B=On' A=On') = 0.83	On	Off	Off	
A	On	On	Off	
5/6 = 0.83	On	On	On	
B	On	On	On	
	On	On	On	
С	Off	Off	Off	
	Off	On	On	
	Off	Off	Off	
	Off	Off	Off	
	Off	Off	Off	
(c) Devika Subramanian, 2006				

Learning CPTs	Α	В	С
	On	On	On
P(B=On' A=On') = 0.83	On	Off	Off
P(B='Off' A='Off') = 0.8	On	On	Off
B	On	On	On
	On	On	On
4/5 = 0.8	On	On	On
	Off	Off	Off
	Off	On	On
	Off	Off	Off
	Off	Off	Off
	Off	Off	Off
(c) Devika Subramanian, 2006			

Learnina CPTs	A	В	С
	On	On	On
P(B=On' A=On') = 0.83	On	Off	Off
P(B='Off' A='Off') = 0.8	On	On	Off
Brichard	On	On	On
P(C=On' A=On') = 0.66	On	On	On
	On	On	On
4/6 = 0.86	Off	Off	Off
	Off	On	On
	Off	Off	Off
	Off	Off	Off
	Off	Off	Off
(c) Devika Subramanian, 2006			

Learning CPTs				В	С
					On
		P(B=On' A=On') = 0.83	On	Off	Off
	A	P(B='Off' A='Off') = 0.8	On	On	Off
	+		On	On	On
	B	P(C=On A=On) = 0.66	On	On	On
		P(C='On' B='On') = 0.8	On	On	On
	C		Off	Off	Off
L		4/5 = 0.8	Off	On	On
		<i>ii</i> 0 = 0.0	Off	Off	Off
			Off	Off	Off
			Off	Off	Off
		(c) Devika Subramanian, 2006			

			Analysis of orde
RIOI	0010		Analysis of orde
	- <u>9</u>		
reio	ΙΤΙΟΙ	15	
			1
Cana/OBE	Score in Ex	Consist	Notes
MCD1	Multinomiai	Gaussian	Notes
MCDI	202	509	Paguined for mismatch ranging in mitagis and majorie
CEID	292	407	Required for mismatch repair in finitosis and metosis
CSI2	444	497	Bela in cell maintenance, entiti synthesis
CLN2	497	454	Role in cell cycle START, null mutant exhibits GT arrest
YLK183C	221	448	Contains forkheaded associated domain, thus possibly nuclear
RFA2	456	423	Involved in nucleotide excision repair, null mutant is inviable
RSR1	352	395	GTP-binding protein of the RAS family involved in bud site selection
CDC45	-	394	Required for initiation of chromosomal replication, null mutant lethal
RAD53	60	383	Cell cycle control, checkpoint function, null mutant lethal
CDC5	209	353	Cell cycle control, required for exit from mitosis, null mutant lethal
POL30	376	321	Required for DNA replication and repair, null mutant is inviable
YOX1	400	291	Homeodomain protein
SRO4	463	239	Involved in cellular polarization during budding
CLNI	324		Role in cell cycle START, null mutant exhibits G1 arrest
1000000	298	8	tore in conception of and an adding compared of all of
YBROXUW	· • · · · · · · · · · · · · · · · · · ·		

Rin	logic	nl An	alucic of Man
	iugici		$u_{1}y_{3}z_{3} \cup v_{1}u_{1}$
			•
roli	ntion	C	
		3	
Confidence	Gene 1	Gene 2	Notes
1.0	YKL163W-PIR3	YKL164C-PIR1	Close locality on chromosome
0.985	PRY2	YKR012C	Close locality on chromosome
0.985	MCD1	MSH6	Both bind to DNA during mitosis
0.98	PHO11	PHO12	Both nearly identical acid phosphatases
0.975	HHTI	HTB1	Both are Histones
0.97	HTB2	HTA1	Both are Histones
0.94	YNL057W	YNL058C	Close locality on chromosome
0.94	YHR143W	CTS1	Homolog to EGT2 cell wall control, both involved in
			Cytokinesis
0.92	YOR263C	YOR264W	Close locality on chromosome
0.91	YGR086	SIC1	Homolog to mammalian nuclear ran protein, both in
	11.0804018-0611000	0.000.000	volved in nuclear function
0.9	FAR1	ASH1	Both part of a mating type switch, expression
	21.000000000000	e-second	uncorrelated
0.89	CLN2	SVS1	Function of SVS1 unknown
0.88	YDR033W	NCE2	Homolog to transmembrame proteins suggest bot
	1.50.50.000.00000000000	199497 (* 5886 A (involved in protein secretion
0.86	STE2	MFA2	A mating factor and receptor
0.85	HHF1	HHF2	Both are Histones
0.85	MET10	ECM17	Both are sulfite reductases
0.00	CIDCO	DADOT	nut distant of the

