Article Filtering for Conflict Forecasting

Benedict Lee and Cuong Than

Comp 540

4/25/2006

Motivation

- One goal of the Ares Project is to predict conflict from events data extracted from various news sources
 - Sources: Reuters, BBC, The Associated Press
- Sources contain many irrelevant articles
 - We'd like to distinguish relevant articles from irrelevant articles

- Text Classification Problem
 - Relevant International political interactions
 - Irrelevant Everything else
- Additional context/information not necessarily available, so we classify solely on text of article

General Approach

- Assertion: Relevant/irrelevant articles are similar to other relevant/irrelevant articles
- For each article, generate a Relevance and Irrelevance Rating based on "similarity" with training articles.
 - "Similarity" derived from the OKAPI BM25 Ranking formula (with Inflectional and Synonym Generation)

Direct Comparison Classifier

- The top N OKAPI scores are summed together to form Relevance/Irrelevance Ratings.
 - N is a tweakable parameter
- Article is classified as Relevant if Relevance Rating >= Irrelevance Rating

Logistic Regression Classifier

- Input: relevance/irrelevance ratio.
- Output: 1 or 0, representing the Relevant and Irrelevant categories.
- Model: $\Pr(y = 1 | x) = e^{h(x)}/(1 + e^{h(x)})$, where $h(x) = \theta^T x$.
- Decision rule: x is classified as 1 if $Pr(y) = 1|x| \ge 0.5$, or equivalently $h(x) \ge 0$.

Fitting the Model

- Compute the likelihood over the training dataset.
- Maximize the likelihood to obtain a set of non-linear equations.
- Solve this set of equations by the IRLS method to find the parameter vector θ .

Dealing with Costs

Motivation: misclassifying a relevant article costs more than misclassifying an irrelevant one.

	actual neg.	actual pos.	
predict neg.	C_{00}	C ₀₁	
predict pos.	C ₁₀	C ₁₁	

• Normally, $c_{10} > c_{00}$ and $c_{01} > c_{11}$.

Dealing with Costs (cont'd)

Making decision: classify x as in category i if the risk function

$$\Sigma_{j} \Pr(j \mid x) c(i, j)$$

is minimized.

• x is classified as in class 1 if Pr(y = 1 | x) $\geq p^*$, where $p^* = (c_{10} - c_{00}) / (c_{10} - c_{00}) + c_{01} - c_{11}$.

Dealing with Costs (cont'd)

- Folk Theorem. By altering the example distribution, an error-minimizing classifier solves cost-sensitive problems.
- For binary output space, the number of negative examples is multiplied by

$$p^*(1-p_0) / (1-p^*)p_0$$

 Intuition: Changing the example distribution will change the posterior probability.

Extend Classifiers with Voting

- We can increase the classifier's accuracy by learning several models and predict new cases by voting.
- Build four models for four different pairs of relevance/irrelevance ranks.

Working Dataset

- ~180,000 categorized Reuters articles
 from 9/1996 7/1997
 - Relevant Categories: GVIO, G13, GDIP
 - Irrelevant Categories: 1POL, 2ECO, 3SPO, ECAT, G12, G131, GDEF, GPOL

Test Methodology

- 10-Fold Cross-Validation on Reuters Dataset
 - 5 Trials
 - Approaches:
 - Naïve Bayes (NB)
 - Weight-based Complement Naïve Bayes (WNB)
 - OKAPI Direct Comparison (ODC)
 - OKAPI Logistic Regression (OLR)
 - OKAPI Cost-Sensitive LR (OCLR)

ODC Tests with Varying N

N	Recall	Precision	Accuracy
5	0.926	0.868	0.935
10	0.931	0.875	0.939
25	0.931	0.874	0.939
50	0.931	0.868	0.937
Comp.	0.942	0.863	0.937

 Different N values do not significantly affect results

Classifier Comparison Results

Classifier	Recall	Precision	Accuracy
NB	0.859	0.806	0.895
WNB	0.867	0.798	0.893
ODC	0.931	0.874	0.939
OLR	0.888	0.914	0.941
OCLR	0.929	0.875	0.939

■ ODC and OLR: N = 25

• OCLR: $c_{00} = c_{11} = 0$, $c_{01} = 1$, $c_{10} = 0.7$

Analysis

- All OKAPI classifiers performed better than NB and WNB in our tests.
- OLR has worse recall because it gives equal weights to false positives and false negatives.
- Adding cost-sensitivity improved performance.

Conclusion

- The OKAPI classifiers are suitable for text classification.
- OLR doesn't perform as well as ODC.
- The cost table in OCLR can be adjusted to the appropriate trade-off necessary between recall and precision.