
1

Reinforcement learning algorithms
for non-stationary environments

Devika Subramanian
Rice University

Joint work with Peter Druschel and Johnny Chen of Rice
University. Supported by a grant from Southwestern Bell.

Outline
n A short introduction to reinforcement

learning
n Modeling routing as a distributed

reinforcement learning problem
n The evolution of algorithms for routing in

dynamic networks
n Conclusion

2

Reinforcement learning

n learning optimal policies for sequential decision
making tasks by repeated interaction with the
environment.

E

L
State sAction a

Reward r

Example: finding shortest paths
B

C

DA

1
2

1

2 4

L
Packet location

Routing action choices

e.g., packet at node A, route
to B or C?

Action: send
packet to node

e.g., send packet to B

Reward: 1 hop
cost

3

Example: continued

n Goal: find shortest paths to node D.
n Interaction with environment:

– World: packet at node x, choices for routing
are nodes y,z...

– Learner: send packet to y.
– World: that cost you distance(x,y).
– World: packet at node y, choices for routing

are nodes…
– Learner: send packet to …

Example continued
n Reinforcement learner samples paths in the

network
– (A,B,1),(B,D,1)
– (A,C,2),(C,D,4)
– (A,C,2),(C,A,2),(A,B,1),(B,D,1)
– …..

n Reinforcement learner acquires a policy
that maps each node to the neighbor it
must route a packet to, in order to
minimize distance to node D.

4

Reinforcement learning: basics
n Associate with each node s, a value

function VD which is the cost of the
shortest path from s to goal node D.

n Update VD online as follows, upon
observing (s,s’,r)

))'(()()1()(sVrsVsV DDD ++−= αα

New estimate
of distance from s to D

Current estimate
of distance from
s to D.

Learning rate

Why does this equation work?

n It is an online approximation of Bellman’s
dynamic programming

n Bellman’s equation updates V(s) according
to best neighbor of s, while reinforcement
learning updates V(s) according to
observed neighbor of s in the sampled
trajectory. In the limit, they both
converge to the same V.

[])'()',(min)(
)('

sVssrsV DsNbssD +=
∈

5

The reinforcement learning
algorithm
n Initialize V(s) = 0, for all s in S.
n Repeat until V converges

– s = s0
– while (s not a terminal state) do

• Pick best action a in s, consistent with
current V estimates. (can be stochastic)

• Do a, and transition to state s’ with reward r.
• Update V(s) using (s,s’,r)

– end while

Policies and value functions
n Once the algorithm converges on the

optimal value function VD
*, each node can

calculate its best policy as follows:

– this is the best neighbor of s to forward a
packet headed for node D.

)]'()',([minarg)(*

)('

* sVssrs D
sNbss

D +=
∈

π

6

Condition for convergence of RL

n RL learns the value function V by
repeated biased random sampling of
trajectories.

n Requires that the environment be
stationary for convergence:
– Network topology does not change with

time.
– Network edge costs do not change with

time.

The Internet routing problem

B

C

DA
Dst Next-hop
B B
C B
A B

Dst Next-hop
A A
C C
D D

Dst Next-hop
B B
C C
D B

Dst Next-hop
A A
C B
D B

D’s forwarding table

C’s forwarding table

B’s forwarding table

A’s forwarding table 1
2

1

2 4

7

Challenge

n System state is distributed, obtaining
global state requires communication.

n System is non-stationary:
– topology changes with time (link/router

failure or recovery),
– link costs change with time (congestion).

Modeling routing as a distributed
reinforcement learning problem

System

Learners

A reinforcement
learner at each
node of the
network

8

Distributing the value function

n For each destination d, a node maintains Vd
: the cost of the cheapest path to that d.

is the best neighbor to forward packet
to for d.

n Question: how do we update these local
projections Vd for each node s?

dπ

[])'()',(min)(
)('

sVssrsV dsNbssd +=
∈

A space of RL algorithms for
routing
n Information propagation strategy for V estimation

– Indirect path sampling: get neighbors to supply
r(s,s’) and Vd(s’).

– Direct path sampling: s sends probes to d and
gets path cost from s to d directly.

n Action choice
– deterministic or stochastic routing.

n Policy computation
– Indirectly computed from value function.
– Direct policy update (no value function

maintained).

9

Direct & indirect path sampling
Network

V(x,d)= minn[r(x,n) + V(n,d)], where n ranges over neighbors of x.
Neighbors exchange value functions. (classical RL)

INDIRECT PATH SAMPLING

DIRECT PATH SAMPLING
Probes travel end-to-end from x to d informing routers
in between of cost to x.

x
dn

Stochastic sampling & flooding
for direct path sampling

Network

x
dn

STOCHASTIC PATH SAMPLING
When a probe reaches node n, it is probabilistically routed to
ONE of the neighbors of n.

FLOODING
When a probe reaches node n, it is forwarded to all neighbors
of n except for the one that it was received from.

10

Traditional RL solution:
distance vector algorithm
n Information propagation: indirect path

sampling
n Action choice: deterministic routing
n Policy computation: indirect via value

function update
– V(x,d) = minn[r(x,n) + V(n,d)], where n

ranges over neighbors of x.

Routing with ants (IJCAI)
n Information propagation:

– direct sampling
– stochastic

n Action choice: stochastic routing policy at every
router
– Probabilistic forwarding table entry at x:

(s, (y1,p1), ..., (yn,pn))

n Policy computation: direct policy update
– routing probabilities are modified using path

costs announced by ants.

11

Routing with ants: the details (1)
n Each node s periodically sends an ant [s,d,C].
n When node x receives ant [s,d,C] from neighbor yi,

– x adds to C the cost of link (x,yi).
– x updates its probabilistic forwarding table entry for

node s:

0,

,1for ,
1

1

>=∆

≠≤≤
∆+

=

∆+
∆+

=

k
C
k

p

jinj
p

p
p

p
pp

p

j
j

i
i

Routing with ants: the details (2)
n Regular ants

– x forwards ant [s,d,C’] to a neighbor
according to its data packet forwarding
policy for node d (probabilistic policy).

– Ant [s,d,C’] is destroyed when it reaches
node d.

n Uniform ants
– x forwards ant [s,d,C’] to one of its

neighbors with equal probability.
– Ant [s,d,C’] destroyed when C’ exceeds a

threshold.

12

Regular ants (theoretical analysis)

)(1 prob with
1

)(

)(prob with
1

)()1(

)(1 prob with
1

)(

)(prob with
1

)()1(

tp
p

tq

tp
p

ptqtq

tq
p

tp

tq
p

ptptp

a

b

b

b

a

a

−
∆+

=

∆+
∆+=+

−
∆+

=

∆+
∆+=+

If Ca < Cb then p(t) → 1 and q(t) → 1 as t → infinity

∆pa=k/Ca

∆pb=k/Cb

Properties of regular ants

n Bad news travels fast.
n Good news travels slow.

13

Uniform ants (theoretical analysis)

0.5 prob with
1

)(

0.5 prob with
1

)()1(

0.5 prob with
1

)(

0.5 prob with
1

)()1(

a

b

b

b

a

a

p
tq

p
ptqtq

p
tp

p
ptptp

∆+
=

∆+
∆+=+

∆+
=

∆+
∆+=+

Traffic is divided in inverse proportion to the link costs.
Multi-path routing!!

Routing performance study
n We test routing traffic scalability by

– Fixing the convergence times for the
algorithms: uniform and regular ants, and two
state-of-the-art routing algorithms: Distance
Vector and Link State.

– Creating a parametric “Internet like” network
topology: tree with cross edges.

– Measuring routing traffic in bytes/sec/link in
network as size of network increases.

14

Path convergence times

Routing traffic with Internet-
like topology

15

Routing traffic with topology
changes

Resilience to state corruption

Both regular and uniform ants perform exceedingly well
in the face of state corruption in routers.

16

Lessons learned
n Direct policy updates slow in responding to

topology changes compared to state-of-
the-art solution (distance vector).

n Stochastic path sampling (biased random or
uniform random) requires an order of
magnitude more routing resources than
conventional solution.

n Stochastic path sampling offers a degree
of resilience unmatched by conventional
solution.

The Scout routing algorithm
n Information propagation:

– direct
– flooding

n Action choice: deterministic routing
n Policy computation: indirect via value function

update
– V(x,d) : cost of path from x to d revised by ants.

Ants with all the stochastic stuff thrown away!

17

Scout routing algorithm (the
details)
n A node x sends scout [x,0] to each of its

neighbors.
n When node y receives scout [x,C] from

neighbor z,
– it updates C to C’ by adding cost of link (y,z) to

C.
– it compares its current estimate of path cost

to x to C’; if C’ < x then it updates its next-hop
to x to be z.

– it forwards [x,C’] to every neighbor other than
z.

Scout performance on Internet-like
topology

Note Scout’s fast convergence!
Scout convergence times can be
adjusted by varying the sampling
rate.

18

Scout routing costs

Both in terms of messages and bytes, Scout requires
1-2 orders of magnitude more resources for the same
routing performance.

Lessons learned

n Direct path sampling is very expensive
because route computations are not
aggregated.

19

Adapting to network
congestion: traditional solution
n Link costs depend on traffic conditions. Path re-

computation triggered when the change in a link’s
cost exceeds a specified threshold.

n All paths affected by cost change are
recalculated.

n Recalculations occur quasi-simultaneously.
n First implemented in early 1980s on the Arpanet;

providing 50% improvements in round-trip delay
and 18% improvement in throughput.

Problems with traditional
solution
n All-pairs and quasi-simultaneous path re-

computations cause routing instabilities
(e.g., oscillations)

n Routing traffic is data traffic dependent
(need thresholds and hold-downs to control
routing traffic overhead).

20

Lessons learned from Scout
algorithm
n Direct path sampling allows path re-

computations to be uncorrelated across
time, so that all nodes in the network do
not simultaneously switch paths in
response to congestion (route oscillation).

n Therefore, direct path sampling is
excellent for adapting paths to network
congestion.

Harnessing the power of direct
path sampling
n Sample paths to a limited number of “hot”

destinations.

21

Network traffic locality

Analyzed traffic traces from DEC and LBL.
Top 10% of destinations receive over 90% of the
traffic. Top 1% of destinations receive over 60%
of the traffic.

Hybrid Scout (Infocomm)
n Direct path sampling with flooding (Scout)

for hot destinations alone.
n Indirect path sampling (Distance vector)

for all other nodes.
n Deterministic routing and indirect policy

computation via value function update in
both cases.

22

Routing costs vs performance

Routing cost vs performance

23

Lessons learned
n Indirect path sampling performs poorly in

non-stationary environments.
– Route oscillation problems.
– inability to solve selective portions of

the all-pairs-shortest-path problem.
n Direct path sampling overcomes stability

problems in non-stationary environments,
but performance requirements restrict its
use to “important” nodes.

Reinforcement learning &
routing

Indirect
path
sampling

Direct path
sampling

det stochastic det stochastic

Policy Vf

Distance
vector

ants

policy vf policy vfpolicy vf

scouts

24

Conclusions
n Reinforcement learning algorithms for non-

stationary environments can be built and they can
be very effective.

n Blending direct and indirect path sampling is the
key to handling non-stationarity. Direct path
sampling decouples path re-computations in
changing network providing stability and
convergence. Indirect path sampling’s efficiency
hard to beat under stationary conditions!

n Stochastic action choice cannot compete with
deterministic action choice in Internet routing.

n Direct policy update is inefficient compared to
value function updates.

Open questions
n How do we formulate convergence criteria for

non-stationary environments?
n How do we prove convergence of the direct

sampling reinforcement learning methods?

