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Outline
n A short introduction to reinforcement 

learning
n Modeling routing as a distributed 

reinforcement learning problem
n The evolution of algorithms for routing in 

dynamic networks
n Conclusion
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Reinforcement learning

n learning optimal policies for sequential decision 
making tasks by repeated interaction with the 
environment.
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Example: continued

n Goal: find shortest paths to node D.
n Interaction with environment:

– World: packet at node x, choices for routing 
are nodes y,z...

– Learner: send packet to y.
– World: that cost you distance(x,y).
– World: packet at node y, choices for routing 

are nodes…
– Learner: send packet to …

Example continued
n Reinforcement learner samples paths in the 

network
– (A,B,1),(B,D,1)
– (A,C,2),(C,D,4)
– (A,C,2),(C,A,2),(A,B,1),(B,D,1)
– …..

n Reinforcement learner acquires a policy 
that maps each node to the neighbor it 
must route a packet to, in order to 
minimize distance to node D.
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Reinforcement learning: basics
n Associate with each node s, a value 

function VD which is the cost of the 
shortest path from s to goal node D.

n Update VD online as follows, upon 
observing (s,s’,r) 

))'(()()1()( sVrsVsV DDD ++−= αα

New estimate
of distance from s to D

Current estimate
of distance from
s to D.

Learning rate

Why does this equation work?

n It is an online approximation of Bellman’s 
dynamic programming 

n Bellman’s equation updates V(s) according 
to best neighbor of s, while reinforcement 
learning updates V(s) according to 
observed neighbor of s in the sampled 
trajectory. In the limit, they both 
converge to the same V.

[ ])'()',(min)(
)('

sVssrsV DsNbssD +=
∈



5

The reinforcement learning 
algorithm
n Initialize V(s) = 0, for all s in S.
n Repeat until V converges

– s = s0
– while (s not a terminal state) do

• Pick best action a in s, consistent with 
current V estimates. (can be stochastic)

• Do a, and transition to state s’ with reward r.
• Update V(s) using (s,s’,r)

– end while

Policies and value functions
n Once the algorithm converges on the 

optimal value function VD
*, each node can 

calculate its best policy as follows: 

– this is the best neighbor of s to forward a 
packet headed for node D.
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Condition for convergence of RL

n RL learns the value function V by 
repeated biased random sampling of 
trajectories.

n Requires that the environment be 
stationary for convergence:
– Network topology does not change with 

time.
– Network edge costs do not change with 

time.

The Internet routing problem
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Challenge

n System state is distributed, obtaining 
global state requires communication. 

n System is non-stationary: 
– topology changes with time (link/router 

failure or recovery),
– link costs change with time (congestion).

Modeling routing as a distributed 
reinforcement learning problem

System

Learners

A reinforcement
learner at each
node of the 
network
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Distributing the value function

n For each destination d, a node maintains Vd
: the cost of the cheapest path to that d.  

is the best neighbor to forward packet 
to for d.

n Question: how do we update these local 
projections Vd for each node s?

dπ
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A space of RL algorithms for 
routing
n Information propagation strategy for V estimation

– Indirect path sampling: get neighbors to supply 
r(s,s’) and Vd(s’).

– Direct path sampling: s sends probes to d and 
gets path cost from s to d directly.

n Action choice
– deterministic or stochastic routing.

n Policy computation
– Indirectly computed from value function.
– Direct policy update (no value function 

maintained).
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Direct & indirect path sampling
Network

V(x,d)= minn[r(x,n) + V(n,d)], where n ranges over neighbors of x.
Neighbors exchange value functions. (classical RL)

INDIRECT PATH SAMPLING

DIRECT PATH SAMPLING
Probes travel end-to-end from x to d informing routers
in between of cost to x. 

x
dn

Stochastic sampling & flooding 
for direct path sampling

Network

x
dn

STOCHASTIC PATH SAMPLING
When a probe reaches node n, it is probabilistically routed to
ONE of the neighbors of n.

FLOODING
When a probe reaches node n, it is forwarded to all neighbors 
of n except for the one that it was received from.
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Traditional RL solution: 
distance vector algorithm
n Information propagation:  indirect path 

sampling
n Action choice: deterministic routing
n Policy computation: indirect via value 

function update 
– V(x,d) = minn[r(x,n) + V(n,d)], where n 

ranges over neighbors of x.

Routing with ants (IJCAI)
n Information propagation:

– direct sampling
– stochastic

n Action choice: stochastic routing policy at every 
router
– Probabilistic forwarding table entry at x: 

(s, (y1,p1), ..., (yn,pn))

n Policy computation: direct policy update
– routing probabilities are modified using path 

costs announced by ants.
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Routing with ants: the details (1)
n Each node s periodically sends an ant [s,d,C].
n When node x receives ant [s,d,C] from neighbor yi,

– x adds to C the cost of link (x,yi).
– x updates its probabilistic forwarding table entry for 

node s:
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Routing with ants: the details (2)
n Regular ants

– x forwards ant [s,d,C’] to a neighbor 
according to its data packet forwarding 
policy for node d (probabilistic policy).

– Ant [s,d,C’] is destroyed when it reaches 
node d.

n Uniform ants
– x forwards ant [s,d,C’] to one of its 

neighbors with equal probability.
– Ant [s,d,C’] destroyed when C’ exceeds a 

threshold.
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Regular ants (theoretical analysis)
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If Ca < Cb then p(t) → 1 and q(t) → 1 as t → infinity

∆pa=k/Ca

∆pb=k/Cb

Properties of regular ants

n Bad news travels fast.
n Good news travels slow.
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Uniform ants (theoretical analysis)
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Traffic is divided in inverse proportion to the link costs.
Multi-path routing!!

Routing performance study
n We test routing traffic scalability by

– Fixing the convergence times for the 
algorithms: uniform and regular ants, and two 
state-of-the-art routing algorithms: Distance 
Vector and Link State.

– Creating a parametric “Internet like” network 
topology: tree with cross edges.

– Measuring routing traffic in bytes/sec/link in 
network as size of network increases.
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Path convergence times

Routing traffic with Internet-
like topology
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Routing traffic with topology 
changes

Resilience to state corruption

Both regular and uniform ants perform exceedingly well
in the face of state corruption in routers.
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Lessons learned
n Direct policy updates slow in responding to 

topology changes compared to state-of-
the-art solution (distance vector).

n Stochastic path sampling (biased random or 
uniform random) requires an order of 
magnitude more routing resources than 
conventional solution.

n Stochastic path sampling offers a degree 
of resilience unmatched by conventional 
solution.

The Scout routing algorithm
n Information propagation:

– direct
– flooding

n Action choice: deterministic routing
n Policy computation: indirect via value function 

update
– V(x,d) : cost of path from x to d revised by ants. 

Ants with all the stochastic stuff thrown away!
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Scout routing algorithm (the 
details)
n A node x sends scout [x,0] to each of its 

neighbors.
n When node y receives scout [x,C] from 

neighbor z,
– it updates C to C’ by adding cost of link (y,z) to 

C.
– it compares its current estimate of path cost 

to x to C’; if C’ < x then it updates its next-hop 
to x to be z.

– it forwards [x,C’] to every neighbor other than 
z.

Scout performance on Internet-like 
topology

Note Scout’s fast convergence!
Scout convergence times can be 
adjusted by varying the sampling
rate.
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Scout routing costs

Both in terms of messages and bytes, Scout requires
1-2 orders of magnitude more resources for the same
routing performance.

Lessons learned

n Direct path sampling is very expensive 
because route computations are not 
aggregated.
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Adapting to network 
congestion: traditional solution
n Link costs depend on traffic conditions. Path re-

computation triggered when the change in a link’s 
cost exceeds a specified threshold.

n All paths affected by cost change are 
recalculated.

n Recalculations occur quasi-simultaneously.
n First implemented in early 1980s on the Arpanet; 

providing 50% improvements in round-trip delay 
and 18% improvement in throughput.

Problems with traditional 
solution
n All-pairs and quasi-simultaneous path re-

computations cause routing instabilities 
(e.g., oscillations)

n Routing traffic is data traffic dependent 
(need thresholds and hold-downs to control 
routing traffic overhead).
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Lessons learned from Scout 
algorithm
n Direct path sampling allows path re-

computations to be uncorrelated across 
time, so that all nodes in the network do 
not simultaneously switch paths in 
response to congestion (route oscillation). 

n Therefore, direct path sampling is 
excellent for adapting paths to network 
congestion.

Harnessing the power of direct 
path sampling
n Sample paths to a limited number of “hot” 

destinations.
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Network traffic locality

Analyzed traffic traces from DEC and LBL.
Top 10% of destinations receive over 90% of the
traffic. Top 1% of destinations receive over 60%
of the traffic.

Hybrid Scout (Infocomm)
n Direct path sampling with flooding (Scout) 

for hot destinations alone.
n Indirect path sampling (Distance vector) 

for all other nodes.
n Deterministic routing and indirect policy 

computation via value function update in 
both cases.
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Routing costs vs performance

Routing cost vs performance
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Lessons learned
n Indirect path sampling performs poorly  in 

non-stationary environments.
– Route oscillation problems.
– inability to solve selective portions of 

the all-pairs-shortest-path problem.
n Direct path sampling overcomes stability 

problems in non-stationary environments, 
but performance requirements restrict its 
use to “important” nodes.

Reinforcement learning & 
routing

Indirect
path
sampling

Direct path
sampling

det stochastic det stochastic

Policy Vf

Distance
vector

ants

policy vf policy vfpolicy vf

scouts
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Conclusions
n Reinforcement learning algorithms for non-

stationary environments can be built and they can 
be very effective.

n Blending direct and indirect path sampling is the 
key to handling non-stationarity. Direct path 
sampling decouples path re-computations in 
changing network providing stability and 
convergence. Indirect path sampling’s efficiency 
hard to beat under stationary conditions!

n Stochastic action choice cannot compete with 
deterministic action choice in Internet routing.

n Direct policy update is inefficient compared to 
value function updates.

Open questions
n How do we formulate convergence criteria for 

non-stationary environments?
n How do we prove convergence of the direct 

sampling reinforcement learning methods?


