Crypto Protocols, part 2

Today’s talk includes slides from: Jonathan Millen and Dan Wallach
Example - Needham-Schroeder

- The Needham-Schroeder symmetric-key protocol [NS78]

 \[
 \begin{align*}
 A & \rightarrow S: A, B, Na \\
 S & \rightarrow A: \{Na, B, Kc, \{Kc, A\}Kb \}Ka \\
 A & \rightarrow B: \{Kc, A\}Kb \\
 B & \rightarrow A: \{Nb\}Kc \\
 A & \rightarrow B: \{Nb-1\}Kc
 \end{align*}
 \]

- A, B are “principals;” S is a trusted key server
- Ka, Kb are secret keys shared with S
- \{X, Y\}K means: X concatenated with Y, encrypted with K
- Na, Nb are “nonces;” fresh (not used before)
- Kc is a fresh connection key
Denning-Sacco Attack

• Assumes that the attacker has recorded a previous session, and compromised the connection key K_x used in that one.

 $A \rightarrow B: \{K_x, A\}K_b$ \hspace{1cm} attacker replayed old message

 $B \rightarrow A: \{Nb\}K_x$

 $A \rightarrow B: \{Nb-1\}K_x$ \hspace{1cm} forged by attacker

• B now believes he shares a fresh secret key K_x with A.
• Denning-Sacco moral: use a timestamp (calendar clock value) to detect replay of old messages.
Belief Logic

- **Burrows, Abadi, and Needham (BAN) Logic [BAN90a]**
 - Modal logic of belief ("belief" as local knowledge)
 - Special constructs and inference rules
 - e.g., P sees X (P has received X in a message)
 - Protocol messages are “idealized” into logical statements
 - Objective is to prove that both parties share common beliefs
Constructs

P bel X P believes X
P sees X P received X in a message
P said X P once said X
P controls X P has jurisdiction over X
fresh(X) X has not been used before
P <-K-> Q P and Q may use key K for private communication
K-> P P has K as public key
P <-X-> Q X is a secret shared by P and Q
{X}K X encrypted under K
<X>Y X combined with Y
K^{-1} inverse key to K

(This symbolism is not quite standard)
BAN Inference Rules

- These inferences are supposed to be valid despite attacker interference.

1. Message-meaning rules
 - $P \text{ bel } Q \leftarrow K \rightarrow P$, P sees $\{X\}K$ |– P bel Q said X
 - P bel $K \rightarrow Q$, P sees $\{X\}K^{-1}$ |– P bel Q said X
 - P bel $Q \leftarrow Y \rightarrow P$, P sees $\langle X \rangle Y$ |– P bel Q said X

2. Nonce-verification
 - P bel fresh(X), P bel Q said X |– P bel Q bel X

3. Jurisdiction
 - P bel Q controls X, P bel Q bel X |– P bel X
More BAN Rules

(4) Sees rules

\[
P \text{sees } (X, Y) \vdash P \text{ sees } X, P \text{ sees } Y
\]

\[
P \text{ sees } <X>Y \vdash P \text{ sees } X
\]

\[
P \text{ bel } Q <\text{-}K\text{-}> P, P \text{ sees } \{X\}K \vdash P \text{ sees } X
\]

\[
P \text{ bel } K\text{-}> P, P \text{ sees } \{X\}K \vdash P \text{ sees } X
\]

\[
P \text{ bel } K\text{-}> Q, P \text{ sees } \{X\}K^{-1} \vdash P \text{ sees } X
\]

(5) Freshness

\[
P \text{ bel fresh}(X) \vdash P \text{ bel fresh}(X, Y) \text{ (inside encryption)}
\]

- Symmetry of \(<-K->\) and \(<-X->\) is implicitly used
- Conjunction is handled implicitly

\[
P \text{ bel } (X, Y) \vdash P \text{ bel } X \text{ and } P \text{ bel } Y
\]

\[
P \text{ bel } Q \text{ said } (X, Y) \vdash P \text{ bel } Q \text{ said } X, P \text{ bel } Q \text{ said } Y
\]
Protocol Idealization

- Convert a protocol into a collection of statements
 - Assumptions
 - Message idealizations
 - Security goals
- Message idealization conveys intent of message
 - Example: $A \rightarrow B$: \{A, Kab\}_{Kbs}
 - Idealized: B sees $\{A \leftarrow \text{Kab} \rightarrow B\}_{Kbs}$

Note: only encrypted fields are retained in the idealization.
Example - Wide-Mouthed Frog

A → S: A, {T, B, Kab}Kas --> (M1) S sees {T, A <-Kab-> B}Kas
S → B: {T, A, Kab}Kbs --> (M2) B sees {T, A bel A <-Kab-> B}Kbs

(A1) P bel fresh(T), for P = A, B, S
(A2) B bel A controls A <-Kab-> B
(A3) S bel A <-Kas-> S, B bel B <-Kbs-> S
(A4) B bel S controls A bel A <-Kab-> B
(A5) A bel A <-Kab-> B

T is a timestamp
A generates Kab
Kas, Kbs are shared with S
S should check this
Justifies A said A <-Kab-> B
Analysis

● **Goal:** prove that \(B \) bel \(A \) \(\leftarrow\text{Kab}\rightarrow \) \(B \).

● **Proof:**

\[
\begin{align*}
B \text{ sees } \{T, A \text{ bel } A \leftarrow\text{Kab}\rightarrow B\}\text{Kbs} & \quad \text{M2} \\
B \text{ bel } S \text{ said } (T, A \text{ bel } A \leftarrow\text{Kab}\rightarrow B) & \quad A3, \text{ rule } 1 \\
B \text{ bel } \text{fresh}(T, A \text{ bel } A \leftarrow\text{Kab}\rightarrow B) & \quad A1, \text{ rule } 5 \\
B \text{ bel } S \text{ bel } (T, A \text{ bel } A \leftarrow\text{Kab}\rightarrow B) & \quad \text{rule } 2 \\
B \text{ bel } S \text{ bel } A \text{ bel } A \leftarrow\text{Kab}\rightarrow B & \quad \text{conjunction} \\
B \text{ bel } A \text{ bel } A \leftarrow\text{Kab}\rightarrow B & \quad A4, \text{ rule } 3 \\
B \text{ bel } A \leftarrow\text{Kab}\rightarrow B & \quad A2, \text{ Rule } 3
\end{align*}
\]

● **Exercises:**

- Prove that \(S \) bel \(A \) bel \(A \leftarrow\text{Kab}\rightarrow B \)
- Add the message \(B \rightarrow A: \{T\}\text{Kab} (M3) \) and show that \(A \) bel \(B \) bel \(A \leftarrow\text{Kab}\rightarrow B \)
Nessett's Critique

• Awkward example in [Nes90]
 \[A \rightarrow B: \{T, Kab\}K_a^{-1} \rightarrow B \text{ sees } \{T, A \leftarrow\text{Kab} \rightarrow B\}K_a^{-1} \]

• Assumptions
 (A1) \(B \text{ bel } K_a \rightarrow A \)
 (A2) \(A \text{ bel } A \leftarrow\text{Kab} \rightarrow B \)
 (A3) \(B \text{ bel fresh}(T) \)
 (A4) \(B \text{ bel } A \text{ controls } A \leftarrow\text{Kab} \rightarrow B \)

• Goal: \(B \text{ bel } A \leftarrow\text{Kab} \rightarrow B \)

• Proof:
 \[
 \begin{align*}
 & B \text{ bel } A \text{ said } (T, A \leftarrow\text{Kab} \rightarrow B) \quad \text{A1, rule 1} \\
 & B \text{ bel fresh}(T, A \leftarrow\text{Kab} \rightarrow B) \quad \text{A3, rule 5} \\
 & B \text{ bel } A \text{ bel } (T, A \leftarrow\text{Kab} \rightarrow B) \quad \text{rule 2} \\
 & B \text{ bel } A \leftarrow\text{Kab} \rightarrow B \quad \text{A4, rule 3}
 \end{align*}
 \]

• Problem: \(Ka \text{ is a public key, so Kab is exposed.} \)
Observations

- According to “Rejoinder” [BAN90b], “There is no attempt to deal with ... unauthorized release of secrets”
- The logic is monotonic: if a key is believed to be good, the belief cannot be retracted
- The protocol may be inconsistent with beliefs about confidentiality of keys and other secrets
- More generally - one should analyze the protocol for consistency with its idealization
- Alternatively - devise restrictions on protocols and idealization rules that guarantee consistency
Subsequent Developments

- Discussions and semantics, e.g., [Syv91]
- More extensive logics, e.g., GNY (Gong-Needham-Yahalom) [GNY90] and SVO [SvO94]
- GNY extensions:
 - Unencrypted fields retained
 - "P possesses X" construct and possession rules
 - "not originated here" operator
 - Rationality rule: if X |- Y then P bel X |- P bel Y
 - "message extension" links fields to assertions
- Mechanization of inference, e.g, [KW96, Bra96]
 - User still does idealization
- Protocol vs. idealization problem still unsolved
Model-Checking

- Application of software tools designed for hardware CAD
 Verification by state space exploration - exhaustive on model
- Like earlier Prolog tool approach, but
 Forward search rather than reverse search
 Special algorithms (BDDs, etc.)
 A priori finite model (no unbounded recursion)
 Fully automatic once protocol is encoded

- Practitioners:
 Roscoe [Ros95], using FDR (the first)
 Mitchell, et al, using Murphi [MMS97]
 Marrero, et al, using SMV [MCJ97]
 Denker, et al, using Maude [DMT98]
 ... and more
Model-Checking Observations

- Very effective at finding flaws, but
- No guarantee of correctness, due to artificial finite bounds
- Setup and analysis is quick when done by experts
- Automatic translation from simple message-list format to model-checker input is possible [Low98a, Mil97]
- “Killer” example: Lowe attack on Needham-Schroeder public-key protocol, using FDR [Low96]
NSPK Protocol

- Na, Nb are nonces; PKA, PKB are public keys
- The protocol - final handshake
 - A -> B: \{Na, A\}_{PKB}
 - B -> A: \{Na, Nb\}_{PKA}
 - A -> B: \{Nb\}_{PKB}

- Exercise: use BAN Logic to prove
 - B bec A bec A \langle \neg Nb \to B \rangle [BAN90a]
Lowe Attack on NSPK

- X is the attacker acting as a principal
- X masquerades as A for B

<table>
<thead>
<tr>
<th>Session 1: A to X</th>
<th>Session 2: X (as A) to B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A -> X: {Na, A}PKX</td>
<td>A(X) -> B: {Na, A}PKB</td>
</tr>
<tr>
<td>X -> A: {Na, Nb}PKA</td>
<td>B -> A(X): {Na, Nb}PKA</td>
</tr>
<tr>
<td>A -> X: {Nb}PKX</td>
<td>A(X) -> B: {Nb}PKB</td>
</tr>
</tbody>
</table>

(Lowe’s modification to fix it: B -> A: \{Na, Nb, B\}PKA)
Finiteness Limitation

- How many sessions must be simulated to ensure coverage?
 - Lowe attack needed two sessions
 - Example 1.3 in Dolev-Yao [DY83] needed three sessions
 \[A \rightarrow B: \{\{M\}P_{Kb}, A\}P_{Kb} \]
 \[B \rightarrow A: \{\{M\}P_{ka}, B\}P_{ka} \]

- No algorithmically determined bound is possible for all cases
 Because of undecidability for the model

- Possible bounds for limited classes of protocols
 - Lowe “small system” result [Low98b]: one honest agent per role, one time, if certain restrictions are satisfied:
 Encrypted fields are distinguishable
 Principal identities in every encrypted field
 No temporary secrets
 No forwarding of encrypted fields
Inductive Proofs

- **Approach:** like proofs of program correctness
 - Induction to prove “loop invariant”
- **State-transition model, objective is security invariant**
- **General-purpose specification/verification system support**
 - Kemmerer, using Ina Jo and ITP [Kem89] (the first)
 - Paulson, using Isabelle [Paul98] (the new wave)
 - Dutertre and Schneider, using PVS [DS97]
 - Bolignano, using Coq [Bol97]
- **Can also be done manually** [Sch98, THG98]
 - Contributed to better understanding of invariants
 - Much more complex than belief logic proofs
- **Full guarantee of correctness (with respect to model)**
 - Proofs include confidentiality
Summary

- **Cryptographic protocol verification** is based on models where
 - Encryption is perfect (strong encryption)
 - The attacker intercepts all messages (strong attacker)
 - Security is undecidable in general, primarily because the number of sessions is unbounded.

- **Belief logic analysis:**
 - Requires “idealization” of the protocol
 - Does not address confidentiality
 - Can be performed easily, manually or with automated support

- **State-exploration approaches**
 - Use model-checking tools
 - Are effective for finding flaws automatically
 - Are limited by finiteness
Summary, cont’d

● Inductive proofs
 - Can prove correctness
 - Require substantial effort
 - Can be done manually, but preferably with verification tools

● Protocol security verification is still a research area
 - But experts can do it fairly routinely

● “Real” protocols are difficult to analyze for practical reasons
 - Specifications are not precise
 - They use operators with more complex properties than simple abstract encryption
 - Flow of control is more complex - protocols negotiate alternative encryption algorithms and other parameters
 - Messages have many fields not relevant to provable security