Public key crypto (quick intro)
Provable cryptography

Slides from Bart Preneel and Phil Rogaway
CPA

support(\mathcal{M}) only has strings of one length

\[\Pi = (K,E,D) \]

\[
\text{Adv}_{\Pi}^{\text{sem}}(A) = \Pr \left[K \leftarrow^S K; (f, M) \leftarrow^S A^{E(K, \cdot)}(); M \leftarrow^S M; C \leftarrow^S E_K(M): \right. \right.
\]
\[
A^{E(K, \cdot)}(C, f) = f(M) \left. \right] -
\]
\[
\Pr \left[K \leftarrow^S K; (f, M) \leftarrow^S A^{E(K, \cdot)}(); M, M' \leftarrow^S M; C \leftarrow^S E_K(M'): \right. \right.
\]
\[
A^{E(K, \cdot)}(C, f) = f(M) \left. \right] \]
\(\Pi = (K, E, D) \)

\[
\text{Adv}^{\text{ind}}_{\Pi}(A) = \Pr \left[K \leftarrow^{\$} K : A^{E(K, \cdot)} = 1 \right] - \Pr \left[K \leftarrow^{\$} K : A^{E(K, 0 | \cdot |)} = 1 \right]
\]
\[\text{Adv}^{\text{ind}}_{\Pi} (A) = \Pr \left[K \xleftarrow{\$} K: A^{E(K, \cdot)} = 1 \right] - \Pr \left[K \xleftarrow{\$} K: A^{E(K, \text{clen}(\cdot))} = 1 \right] \]
Consider a weak form of semantic security: can’t recover the key:

\[\text{Adv}^{01}_\Pi(A) = 2 \Pr[b \leftarrow \{0,1\}; K \leftarrow \mathcal{K}; C \leftarrow E_K(b): A(C) = b] - 1 \]

Assume A does well at breaking \(\Pi \) in the 01-sense.
Construct B that does well at breaking \(\Pi \) in the ind-sense.
Def of B^f

Compute $C \leftarrow f(1)$

Run $A(C)$

When A halts, outputting b

return b

$\text{Adv}_{\Pi}^\text{ind}(B) = \text{Pr}[B^{E(K,\cdot)} = 1] - \text{Pr}[B^{E(K, 0\mid \cdot)} = 1]$

$= \text{Pr}[K \leftarrow K; C \leftarrow E_K(1): A(C) = 1] - \text{Pr}[K \leftarrow K; C \leftarrow E_K(0): A(C) = 1]$

$= \text{Pr}[K \leftarrow K; C \leftarrow E_K(1): A(C) = 1] - (1 - \text{Pr}[K \leftarrow K; C \leftarrow E_K(0): A(C) = 0])$

$= \text{Pr}[K \leftarrow K; C \leftarrow E_K(1): A(C) = 1] + \text{Pr}[K \leftarrow K; C \leftarrow E_K(0): A(C) = 0] - 1$

$= 2 (\text{Pr}[K \leftarrow K; C \leftarrow E_K(1): A(C) = 1](0.5) + \text{Pr}[K \leftarrow K; C \leftarrow E_K(0): A(C) = 0](0.5)) - 1$

$= 2 (\text{Pr}[A \text{ returns } b \mid b=1] \text{ Pr}[b=1] + \text{Pr}[A \text{ returns } b \mid b=0] \text{ Pr}[b=0]) - 1$

$= 2 \text{ Pr}[A \text{ returns } b] - 1$

$= \text{Adv}_{\Pi}^{01}(A)$
$\text{ind}^\$ \Rightarrow \text{ind}$
Let A be an ind-adversary—think of $\delta = \text{Adv}_{\Pi}^{\text{ind}}(A)$ as large.
Construct B that breaks Π in the $\text{ind}^\$-$sense$.

\[E_K(\cdot) \quad \geq \delta/2 \]
\[\text{clen}(\cdot) \quad \geq \delta/2 \]

Case 1: Set $B = A$.
\[\text{Adv}_{\Pi}^{\text{ind}^\$}(B) \geq \delta/2 \]

Case 2: Adv B_f behaves as follows:
Run A
When A asks its oracle x,
Ask $f(0|x|$) and return it to A.
When A outputs a bit b,
return $1-b$
\[
\text{Adv}_{\Pi}^\text{ind$^\$} (t,q) \leq 2 \text{Adv}_{\Pi}^\text{ind} (t+\text{tiny}, \mu) \\
\text{tiny} = O(\mu)
\]

Suppose \(\exists \) an adv A that runs in time \(t \) and asks queries totaling \(\mu \) bits and breaks \(\Pi \) in the ind-sense with advantage \(\delta \).

Then \(\exists \) an adv B that runs in time \(t + O(\mu) \) and asks queries totaling \(\mu \) bits and breaks \(\Pi \) in the ind$^\$-sense with advantage \(\geq \delta/2 \).
\[M_1 \oplus \text{CBC-zero} \quad M_2 \oplus \text{CBC-ctr} \quad M_3 \oplus \text{CBC-chain} \]

\[\overline{K} \]

\[C_1 \quad \overline{K} \quad C_2 \quad \overline{K} \quad C_3 \]

\[\text{CBC-encctr} \quad \text{CBC-rand} \]
CBC-zero (IV = 0)
Ask 0^n → C_1
Ask 1^n → C_2
if C_1 = C_2 then return 0 else return 1

CBC-ctr (IV_i = i)
Ask 0^n → C_1
Ask 0^{n-1} 1 → C_2
if C_1 = C_2 then return 1 else return 0

CBC-chain (IV_i = last block of ciphertext)
Ask 0^n → IV_1 C_1
Ask C_1 → IV_2 C_2
Ask C_2 → IV_3 C_3
if C_2 = C_3 then return 1 else return 0
\(\oplus \)

\(\oplus \)

\(\oplus \)

\(K \)

\(K \)

\(K \)

\(M_1 \)

\(M_2 \)

\(M_3 \)

\(C_1 \)

\(C_2 \)

\(C_3 \)

CTR-ctr

CBC-rand
Proof outline (from Goldwasser and Bellare, chapter 6)

- We know that one-time-pad is secure
- Replace block-cipher with random function (R)
 - $R(i++) = \text{one-time-pad}$
- Shannon proved that “idealized” counter mode give any attacker zero advantage
- Construct difference between ideal and actual protocol (indS)
- Assume adversary A can distinguish ideal and actual protocol
 - Prove that adversary B could use A to distinguish the block cipher from PRF
- Therefore, assuming any B should have low advantage (strong cipher), then
 - Any A therefore has a low advantage
Claim: CTR-rand is secure if its block cipher is a good PRP: Let A be an adv attacking CTR[E]. Construct B that attacks E.

Adversary B^f behaves as follows:

Run A.
When A asks its oracle to encrypt $M=M_1 \cdots M_m$
\[\text{ctr} \leftarrow \{0,1\} \]
compute $\text{pad} = f(\text{ctr}) f(\text{ctr}+1) \cdots f(\text{ctr}+m-1)$
return to A (ctr, pad$\oplus M$)
When A halts, outputting a bit b,
return b
\[\text{Adv}^\text{prp}(B) = \text{Pr}[B^E_K = 1] - \text{Pr}[B^\pi = 1] \]
\[\geq \text{Pr}[B^E_K = 1] - \text{Pr}[B^\rho = 1] - \frac{\sigma^2}{2^{n+1}} \quad \text{(switching lemma)} \]
\[= \text{Pr}[A^\text{CTR}[E_K] = 1] - \text{Pr}[A^\text{CTR}[\rho] = 1] - \frac{\sigma^2}{2^{n+1}} \]

Let \(C \) be the event of a collision in the inputs to the blockcipher

\[= \text{Pr}[A^\text{CTR}[E_K] = 1] - \text{Pr}[A^\text{CTR}[\rho] = 1 | C] \quad \text{Pr}[C] \]
\[- \text{Pr}[A^\text{CTR}[E_K] = 1 | C] \quad \text{Pr}[C] - \frac{\sigma^2}{2^{n+1}} \]
\[= \text{Pr}[A^\text{CTR}[E_K] = 1] - \text{Pr}[A^\|$ = 1] (1 - \text{Pr}[C]) \]
\[- \text{Pr}[A^\text{CTR}[E_K] = 1 | C] \quad \text{Pr}[C] - \frac{\sigma^2}{2^{n+1}} \]
\[= \text{Pr}[A^\text{CTR}[E_K] = 1] - \text{Pr}[A^\$ = 1] + \text{Pr}[C] \quad \text{Pr}[A^\$=1] \]
\[- \text{Pr}[A^\text{CTR}[E_K] = 1 | C] \quad \text{Pr}[C] - \frac{\sigma^2}{2^{n+1}} \]
\[\geq \text{Pr}[A^\text{CTR}[E_K] = 1] - \text{Pr}[A^\$ = 1] - \text{Pr}[C] - \frac{\sigma^2}{2^{n+1}} \]
\[= \text{Adv}^{\text{ind}_E} - \text{Pr}[C] - \frac{\sigma^2}{2^{n+1}} \]

The problem is now an information theoretic one. Claim \(\text{Pr}[C] \leq \frac{\sigma^2}{2^{n+1}} \) (see next slide). We then have

\[\geq \text{Adv}^{\text{ind}_E} - \frac{\sigma^2}{2^{n}} \]
Adversary wants to create a collision. Best way to do this is to toss one ball at a time.

\[\operatorname{Pr}[C] \leq \frac{1}{N} + \frac{2}{N} + \ldots + \frac{(\sigma-1)}{N} \leq \frac{\sigma^2}{2N} \]
Th. Let $E : \mathcal{K} \times \{0,1\}^n \rightarrow \{0,1\}^n$.
Let A attack CBC[E]. Assume A runs in time t_A and
asks σ total blocks and achieves advantage $\delta_A = \text{Adv}^{\text{ind}\$}_{\text{CBC}[E]}(A)$.

Then an adv B that attacks E and runs in time at most t_B
and asks at most q_B queries and achieves advantage at
least $\delta_B = \text{Adv}^{\text{prp}}_E(B)$ where
\[
\begin{align*}
t_B &= t_A + O(\sigma) \\
q_B &= \sigma \\
\delta_B &= \delta_A - \sigma^2 / 2^n
\end{align*}
\]
Def of B^f

Run A
When A asks its oracle $M=M_1\cdots M_m$
 Choose $IV \leftarrow C_0 \leftarrow \$ \{0,1\}^n$
 for $i \leftarrow 1$ to m do $C_i \leftarrow f (C_{i-1} \oplus M_i)$
 return to A (IV, C₁⋯Cₘ)
When A outputs a bit, b,
 return b
\[
\text{Adv}_{E}^{\text{prp}}(B) = \Pr[B^{\text{EK}} = 1] - \Pr[B^{\pi} = 1]
\]
\[
\text{Adv}_{\text{CBC}[E]}^{\text{ind$}}(A) = \Pr[A^{\text{CBC}[E]} = 1] - \Pr[A^{\$} = 1]
\]
\[
\text{Adv}_{\text{CBC}[E]}^{\text{ind$}}(A) - \text{Adv}_{E}^{\text{prp}}(B) = \Pr[B^{\pi} = 1] - \Pr[A^{\$} = 1]
\]
\[
= \Pr[A^{\text{CBC}[\pi]} = 1] - \Pr[A^{\$} = 1]
\]
\[
= \Pr[A^{\text{CBC}[\rho]} = 1] - \Pr[A^{\$} = 1] + \sigma^2/2^{n+1}
\]
Now a purely inf theoretic question. “Game-playing” to Show first difference at most \(\sigma^2 / 2^{n+1}\)
Authenticity

A “wins” if $C \notin \{C_1, \ldots, C_q\}$ and $D_K(C) \neq *$
“Encrypt-with-redundancy”

Attack:
Ask \(0 \, 0\) \rightarrow IV C\(_1\) C\(_2\) C\(_3\)$

Forge
IV C\(_1\) C\(_2\)
MAC “Message Auth. Code” \(\text{MAC}_K(M) \)

\[S^K \xrightarrow{M \cdot \text{MAC}_K(M)} R^K \]

Compute \(\sigma' = \text{MAC}_K(M) \)

Check if \(\sigma = \sigma' \)

A wins if \(\sigma = \text{MAC}_K(M) \) and \(M \notin \{M_1, \ldots, M_q\} \)

“A forgery”

\[\text{Adv}^{\text{mac}}_\Pi (A) = \Pr[K \leftarrow \$ K : A^{\text{MAC}_K(\cdot)} \text{ forges}] \]
The CBC MAC is incorrect across msgs of varying lengths.

To forge:
Ask $0 \rightarrow \sigma_1$
Forge $(0 \sigma, \sigma)$

[BKR] Correct, with bound $3\sigma^2/2^n$ for msgs of some one fixed length.
Fixing the CBC MAC

Encrypted CBC (from RACE project). Shown provably secure (when E a PRP) by [Petrank, Rackoff]
A different fix. Provably security shown in [Black, R]
The key for the MAC is (h,K)

h is a random element of

$$H = \{h: M \rightarrow \{0,1\}^n\}$$

Def: Family of hash functions $H = \{h: M \rightarrow \{0,1\}^n\}$ is ε-AU (almost universal) if for all $M, M' \in M, M \neq M'$,

$$\Pr_h [h(M) = h(M')] \leq \varepsilon$$
Unlikely for a random h
Eg construction

\[M = M_m \ldots M_0 \quad |M_i| = 128 \]

\[M(X) = X^m + M_{m-1}X^{m-1} + \ldots + M_1X + M_0 \]

All operations in GF(2^{128})

There are 2^{128} elements of \(H \), each described by a 128-bit \(R \):

\(h_R(M) = M(R) \). Can be efficiently evaluated.

Claim: \(H \) is m/2^{128}-AU where \(m \) upperbounds the number of blocks on any message \(M \) in the message space \(M \)

Proof: \(\Pr \left[M(R) = M'(R) \right] = \Pr[\text{poly}(R) = 0] \leq m/2^{128} \) because \(\text{poly}(\cdot) \) is a nonzero polynomial of degree at most \(m \) and therefore has at most \(m \) zeros, and so that chance that a random point in the field is one of these zeros is at most \(m / \text{the size of the field} \).
The function NH used in UMAC [BHKKR]. This function is 2^{-15}-AU. The above can be computed in just four instructions on a Pentium processor, allowing one to MAC at about 1cpb.
Authenticated Encryption via Generic Composition
(see [Bellare, Namprempre])

Encrypt-and-MAC

MAC-then-Encrypt

Encrypt-then-MAC

OK!
Authenticated Encryption via Fancy Modes
(see IAPM [J] and OCB [RBBK])