
An Historical Analysis of the SEAndroid Policy Evolution
Bumjin Im

Rice University
Houston, Texas
bi1@rice.edu

Ang Chen
Rice University
Houston, Texas

angchen@rice.edu

Dan S. Wallach
Rice University
Houston, Texas

dwallach@rice.edu

ABSTRACT
Android adopted SELinux’s mandatory access control (MAC) mech-
anisms in 2013. Since then, billions of Android devices have bene-
fited frommandatory access control security policies. These policies
are expressed in a variety of rules, maintained by Google and ex-
tended by Android OEMs. Over the years, the rules have grown to
be quite complex, making it challenging to properly understand or
configure these policies.

In this paper, we perform a measurement study on the SEAn-
droid repository to understand the evolution of these policies. We
propose a newmetric to measure the complexity of the policy by ex-
panding policy rules, with their abstraction features such as macros
and groups, into primitive “boxes”, which we then use to show
that the complexity of the SEAndroid policies has been growing
exponentially over time. By analyzing the Git commits, snapshot by
snapshot, we are also able to analyze the “age” of policy rules, the
trend of changes, and the contributor composition. We also look
at hallmark events in Android’s history, such as the “Stagefright”
vulnerability in Android’s media facilities, pointing out how these
events led to changes in the MAC policies. The growing complexity
of Android’s mandatory policies suggests that we will eventually
hit the limits of our ability to understand these policies, requiring
new tools and techniques.

CCS CONCEPTS
• Security and privacy → Mobile platform security; • Soft-
ware and its engineering → Software configuration manage-
ment and version control systems;

KEYWORDS
Android, security, SELinux, SEAndroid, access control, Git

ACM Reference Format:
Bumjin Im, Ang Chen, and Dan S. Wallach. 2018. An Historical Analysis
of the SEAndroid Policy Evolution. In 2018 Annual Computer Security Ap-
plications Conference (ACSAC ’18), December 3–7, 2018, San Juan, PR, USA,
Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3274694.3274709

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274709

1 INTRODUCTION
Smartphones are a primary target of malicious attacks [21]. The
Android system—as it holds the largest share of the mobile OS
market—has unfortunately become a prominent attack target as
well [19]. Over the years, many attacks have been reported, such
as Stagefright [52], Blueborne [3], and Toaster [34], each of which
has led to significant security concern. In order to harden Android
against such threats, researchers and developers have adapted a
wide variety of security mechanisms to the Android environment,
including process separation, finer grained access control, and se-
cure booting / remote attestation. This study focuses on one such
mechanism: SEAndroid [43].

As an extension of SELinux [29], SEAndroid was originally in-
troduced by the NSA in 2013. It performs mandatory access control
(MAC) to enforce security policies, regulating whether a particular
subject (e.g., a process) can perform a certain action (e.g., read/write)
on an object (e.g., a file/socket). It achieves this by referring to a
pre-installed security policy with a set of access control rules, which
are compiled into a database and loaded by the kernel at boot time.

As with SELinux, configuring a SEAndroid policy is not an easy
task [16, 41]. It is often far from obvious to reason about whether a
particular set of rules achieve a desired policy, or even to understand
what policy certain rules try to implement. There are several reasons
for this. First, the policy language allows many abstraction features,
such as groups, attributions, and (nested) macros, which make
it challenging to infer the scope of individual rules. Second, the
policy rules have little accompanying documentation. Moreover,
they evolve significantly every year.

Fortunately, Google’s default SEAndroid policy is maintained
in a Git repository [1] as part of the Android Open Source Project
(AOSP) [12]. The Git history provides us with a detailed chronicle
of all changes to the policy rules, as well as the commit messages
associated with each change, totaling more than 13,000 commits
over SEAndroid’s history. These commits serve as a rich source of
information for us to perform an historical analysis of the policy’s
evolution, snapshot by snapshot.

Performing this analysis involves at least two challenges. First,
we need a good metric to quantify the complexity of a particular
policy snapshot. Simply counting the number of rules in a snapshot
is not enough, because the SEAndroid policy language supports a
variety of abstractions and grouping concepts, making a rule count
less useful. We address this challenge by designing a new metric,
boxes. This metric views all possible access control policy rules
as forming a four-dimension space, with the axes being subject,
object, class, and permission. Each point in this space is called a box,
representing a smallest “unit” in the rule space. By analyzing how
many rules touch the same box, and how many boxes are impacted
by any given rule, we can then quantify the policy’s complexity.
Consider that complex rules may touch many boxes and many of

629

https://doi.org/10.1145/3274694.3274709
https://doi.org/10.1145/3274694.3274709

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Im et al.

those boxes may be impacted simultaneously by multiple rules.
This means that a change to any one rule may or may not result
in a change to the resulting security policy! If an engineer truly
desires to change a given box, it becomes necessary to go hunting
for every possible rule that might overlap with it.

Our second challenge is that there are thousands of Git commits
that impact the SEAndroid policies. We use a combination of ap-
proaches to address this. We have designed and implemented an
automated system that collects and analyzes each Git commit, iden-
tifying “jump points” in complexity both in terms of the number
of rules and the number of boxes. For significant jump points, we
also manually inspect the commit messages associated with these
commits, and perform a differential analysis on the rules before and
after each such commit to understand the rationale of the changes.
Furthermore, we use the timestamp information to “match” the
commits with historical events of Android security, and analyze
how these events are reflected in the policy’s evolution.

Using the above metrics and methodology, we have performed
an historical analysis on the SEAndroid policy’s evolution.We focus
on the development of security metrics that we can derive from
these policies, such as the number of boxes and rules, the evolving
list of types and macros, the different authors contributing to the
policy over time, how SEAndroid policy stabilized over time, as
well as the hallmark events in Android history. Based on these
measurement results, we also provide insights into how SEAndroid
might evolve to become simpler and more useful.

The structure of the paper is as follows. After describing more
background material in Section 2, we introduce our measurement
methodology in Section 3, presentmeasurement results in Sections 4
and 5. Then, we discuss several related topics in Section 6, present
related work in Section 7, and conclude in Section 8.

2 BACKGROUND
In this section, we present more background material on Android
security architecture and, in particular, SEAndroid.

2.1 Android security architecture
Figure 1 shows the multiple layers of security mechanisms Android
uses to protect system resources and user data [7].

Install-time permissions. Every Android application includes
a “manifest” file specifying the app’s desired permissions. Prior
to Android 6.0, the user was queried at install-time whether the
desired permissions were acceptable (i.e., all-or-nothing). After this,
the new app is assigned a distinct Unix “user” ID, allowing tradi-
tional Unix-style file permissions to separate the storage for each
app. However, Android includes a variety of system services, speak-
ing over Binder (an interprocess communication channel mediated
by the OS kernel). Each Binder service is responsible for determin-
ing if its caller is permitted to use it, querying a central database
constructed from those install-time permissions. This resulted in
permission checks occurring all over the Android software base,
in both Java and native code. This, in turn, made it a challenging
research project just to produce a mapping from every Android API
call to its corresponding set of required permissions [8].

Time-of-use permissions. As of Android 6.0, Android apps
still declare their permission requirements in the manifest, but

Kernel

SELinux / SEAndroid
DAC

Native services

Permission check
HAL

Native
libraries

Android Runtime (ART) / Dalvik

Java Services

Permission check
Java Runtime APIs

App App App App App

uid: a uid: b uid: c uid: d uid: e

Installer

App pkg

Install

UID,GID Perm.

Policy

Kernel

User

Figure 1: The Android security architecture.

App process

App

Location Java API

Service process

Location Manager

Permission check

DAC
SEAndroid

Kernel

Binder
gps

device

①

②
③ ④⑤⑥

⑦

⑧

Kernel

User

!

!

!

!

!

!

!

Figure 2: Control flow with the Android location API. Seven
permission checks are highlighted with yellow circles.

those permissions are not granted until the app explicitly requests
them from the user, preferably at time-of-use. Users are free to
deny permissions and even to revoke permissions later on from the
system settings. The underlying enforcement of these permissions
is largely the same as before, with individual Android services
querying whether their caller has a necessary permission.

Classic Unix discretionary (DAC) permissions. Of course,
Android is also just another flavor of Unix. If an application directly
accesses a Unix resource such as a file or device, traditional Unix
user and group IDs manage the security. A Unix group ID is preas-
signed to each permission, and the Android application launcher
assigns all the necessary group IDs to the application process when
it is launched. Since a Linux process can possesses multiple group
IDs, the access will be granted or denied appropriately.

SEAndroid mandatory (MAC) permissions. After the user
ID and group ID checks are performed, SEAndroid [43], which is
an extension of SELinux [29] for Android, can additionally check
all system calls against its own policy. This policy is loaded at boot
time and enforced inside the OS kernel. SEAndroid policies, by
their static nature, cannot be changed at runtime to reflect new
applications and user-expressed permissions. They can, however,
be used to isolate system services, file directories, and even Binder
resources.

2.2 Example: Location services
To show how these different security systems interact, Figure 2
diagrams the control flow involved when an app makes a call to

630

An Historical Analysis of the SEAndroid Policy Evolution ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

the Location Services, which manages the GPS device and other
location-related (and thus, privacy-sensitive) features.

If an application calls a location API 1 , the corresponding li-
brary establishes a Binder channel between the application and the
location manager 2 . Since Binder is an IPC mechanism provided
by the kernel, the client requires a corresponding discretionary
access control (DAC) permission which is always allowed. After
that, a SELinux hook is called to check the SEAndroid permission,
which is also configured to always permit this call. Binder trans-
fers the request to the location manager 3 , which then calls a
checkPermission() system API (shown as “permission check”) which
checks if the user granted the relevant location permissions to the
calling app. If granted, the location manager interacts directly with
the GPS device 4 . However, this access also requires DAC and
SEAndroid enforcement, which are configured so no other subject
in the Android universe is permitted to interact directly with the
device. The API response unwinds the call path 5 - 8 . Each step
includes another opportunity for DAC and SEAndroid permissions
to be checked, but these are all permitted by default.

Even in this simple example, there are seven different access
control enforcement opportunities on the path from the app to the
GPS device driver. In this case, DAC and SEAndroid only serve
to ensure that the GPS device is only reachable from the location
manager service, while the permission checking for the app is han-
dled internally by the location manager. As this example illustrates,
Android security enforcement is complex to analyze.

Here, the value of SEAndroid is to protect system resources more
precisely from low-level attacks. But as we see in Figures 1 and 2,
the SEAndroid policy does not have any relationship to the Android
security model as Android users and app programmers understand
it. In addition, there is no formal documentation specifying any
of the SEAndroid policies, much less how they interact and how
the user-visible permissions or Unix discretionary permissions are
meant to interact with each other and with SEAndroid.

2.3 SEAndroid policy rules
The SEAndroid policy engine was present on Android devices since
the early 2010s, but it was configured in an inactive “permissive
mode”. The policy was initially configured by NSA and committed
to the AOSP repository [1]. Any Android device OEM can add their
own policy along with the original policy, e.g., using tools such
as setools [45] and audit2allow [35]. This is typically done by
examining denial logs and adding additional rules, which can then
be submitted as patches for inclusion in future ASOP releases.

To enforce the policy, the rules are then parsed and compiled
by a compiler called checkpolicy and loaded in the kernel at boot
time. Needless to say, configuring a SEAndroid policy is critical,
but at the same time, not an easy task [41, 42]. A misconfigured
policy will lead to misbehaviors or even security vulnerabilities. In
order to understand the complexity of the policy, we need to first
understand what the rules look like.

Allow rules. The majority of the policy consists of a sequence
of “allow rules”, such as allow appdomain zygote_tmpfs:file
read, which states that any subject of the type appdomain (i.e., all
applications) should be granted access to any file object of the
type zygote_tmpfs (i.e., files that the zygote process created in the

tmp file system). Besides file, typical classes also include directory,
socket, process, and so on, each indicating a particular category of
resources. This rule additionally specifies a read permission, mean-
ing that accesses can only happen via the read system call. As we
can see, such rules allow for very fine-grained policy, but writing
a rule for each subject and object/class pair for every system call
would not scale.

Abstraction features. To avoid the policy size from growing
out of control, the SEAndroid/SELinux policy language supports a
number of abstraction features, such as wildcards, groups, negation,
and complements. A wildcard (*) can be used in any object, class,
or permission fields to represent “any possible entity”. For instance,
a rule allow appdomain zygote_tmpfs:file * would allow any
system call, not just read. One could additionally group several
entities together, such as allow appdomain zygote_tmpfs: file
dir *. The complement feature is indicated using a tilde (∼), such
as allow init fs_type:filesystem ∼relabelto, meaning that
any system call but a relabelto is permitted.

Neverallow rules. “Neverallow” rules cancel any overlapping
allow rules, i.e., a neverallow rule will always take precedence over
a conflicting allow rule. These rules have a similar format with
allow rules, such as neverallow domain init:binder call.

2.4 The complexity of SEAndroid policy
Over the years, the SEAndroid policy has grown to be very complex.
For instance, the snapshot as of July 2017 specifies 91 classes and
1,603 permissions. In addition to this, three more factors exacerbate
the complexity.

First, the use of abstraction features only hide the complexity
but does not eliminate it. For instance, allow untrusted_app
self:file * may be easier to read, but the wildcard also provides
an opportunity to sweep important issues under the table. Similar
to abstraction features, SELinux supports DTE [4], which allows
a domain to be associated with multiple types. This significantly
decreases the number of rules, but again, hides complexity and
potential vulnerability.

Second, the mixed use of allow and neverallow rules makes
it challenging to accurately reason about the exact behavior of
the security policy. In fact, SEAndroid is by nature a mandatory
access control mechanism, which means that the default action for
anything is already “disallow”, unless explicitly granted access by
an allow rule. The existence of neverallow rules itself reflects that
the policy complexity has grown to an extent where such rules
need to be in place to ensure that misconfigurations are caught.

Third, the policy engineering practice is at times idiosyncratic.
One common practice of developers, for instance, is to extract denial
messages from the kernel log using tools like audit2allow and
simply create a new policy to allow them. Security concerns aside,
this tends to create unoptimized, messy policy rules.

The combination of the above factors mean that it becomes
difficult for an analyst to read the rules and understand exactly
what a given local change might entail in the final calculus of what
is allowed and what is denied. Such complexity, in fact, is one of
the motivating factors for us to perform this analysis.

631

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Im et al.

3 METHODOLOGIES
To the best of our knowledge, we are the first to perform an histori-
cal analysis of the SEAndroid policy. This is in contrast to previous
work, such as Wang et al. [50] that use machine learning to im-
prove the policy, and Zanin et al. [51] that use formal methods to
verify policy correctness. Our goal is to understand not only the
most recent snapshot, but also how the policy has evolved over time.
Since its introduction, more than 16,000 commits have accumulated
in the repository, with detailed timestamps, author information,
and commit messages, providing a valuable source of information
for understanding SEAndroid.

3.1 The “box” metric
One might wonder whether the complexity of a policy snapshot
could simply be measured by counting the number of rules. How-
ever, this is not enough due to the abstraction features, such as
macros, groups, and wildcards, that are heavily used throughout
the policy base. To address this, we have designed a new metric,
the “box”, which is similar in spirit to Lampson’s term “attribute” in
his original work on access control matrices [22]. At a high level, a
box is a quadruple with one subject type, one object type, one class,
and one permission. This is the atomic unit that we use to quantify
the complexity. With this, we can look at two interesting metrics:
how many rules target each box, as well as how many boxes are
targeted by each rule.

From rules to boxes. In order to obtain the boxes, we decom-
pose each rule in the policy base in the following way. First, we
expand all the macros used in the policy rules, and obtain all the
classes and permissions from the access_vectors file. We then
scan all the policy files and obtain all attributes and types. After
this, we perform a second pass over all the policy files and decom-
pose each allow and neverallow rule to their respective boxes,
using the subject, object, class, and permission fields in each rule.
A single allow rule may be decomposed into many allow boxes;
neverallow rules are decomposed as “negative” boxes which are
then subtracted from the allow boxes. The final outcome is a list
of allow boxes equivalent to the original policy.

3.2 Git repository analysis
We repeat this analysis using boxes for each snapshot contained
in the Git history. A Git history is a directed acyclic graph (DAG),
where the commits are vertices and parent-child relations are edges.
Because Git supports multiple branches which might then merge,
not every pair of Git commits is necessarily going to have an
ancestor-descent relationship. By analyzing the graph along with
the contents of each vertex, we would be able to understand how the
policy evolved over time. In addition to analyzing the source code
“diff” in each commit, a commit also has various types of metadata,
such as the committer’s timestamp, email address, and comments.
Such information allows us to gain further understanding of the
rationale behind each policy change. Last but not least, based on
the timestamps of the Git commits, we can also associate these
changes to important historical events, such as security breaches.

One complication that arises due to the nature of Git is the
large number of branches, as it is a distributed source code man-
agement system with many contributors. A contributor can create

100

1,000

10,000

100,000

1,000,000

Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18

N
u
m

b
e
r

o
f
ru

le
s

o
r

b
o
xe

s

Date

Number of boxes

Number of rules

4.3 4.4 5.0 6.0 7.0 8.0 9.0

A

A

B

B

B

Figure 3: The number of rules vs. the number of boxes.

new branches any time without communicating with the master
branch, and merge these branches back. Consequently, if we looked
only at the timestamp of each commit and ordered every commit
by these timestamps, we would be looking at multiple interleaved
histories. Git also supports a “rebase” feature that allows separate
branches to be rearranged into single linear timeline, albeit with
the original timestamps, although multiple changes can also be
“squashed” post-facto into a single commit event. Suffice to say
that our view of the Git repository, as it’s delivered to us, certainly
represents the evolution of the SEAndroid policy over time, but it’s
possible that we’re not seeing important parts of the history.

To simplify our analysis, we decided to perform our measure-
ment study on the master branch only. Although looking at other
branches may give additional information, we believe that an anal-
ysis of the master branch is a useful starting point, because the
master branch reflects the history of Android as it was shipped
from Google through AOSP to the Android OEMs.

3.3 Our measurement tool
We build our measurement tool in Python using 2,000 lines of code,
with three components. Our crawler uses standard Git commands
to check out the repository snapshots, our parser generates the
box metrics from rules, and our serializer uses Python’s msgpack
library to store the policy to the disk.

On our experiment platform, an Intel Core i7 computer with
4 cores and 32 GB RAM and a 4 TB hard disk, our tool takes several
seconds per policy snapshot, parsing all rules and generating boxes
from the rules. For all commits from January 2012 to August 2018,
our tool generates 3 TB of raw data, with hundreds of thousands of
boxes per commit. Constructing the full database takes more than
90 hours of processing.

4 MEASUREMENT RESULTS
In this section and the next, we present the measurement results
obtained from 16,100 commits to the SEAndroid policy repository
between January 2012 and August 2018. We focus on the results
obtained using the new box metric in this section, and provide a
broader, historical analysis in the next section.

4.1 Boxes vs. rules
Figure 3 shows two time series of the number of rules versus the
number of boxes in each commit. We can see that, except for the
period of time between mid-2013 and mid-2015, the curves are

632

An Historical Analysis of the SEAndroid Policy Evolution ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

increasing roughly exponentially (note that the Y-axis is in loga-
rithmic scale).

Zooming in on the timeline between mid-2013 and mid-2015, we
can see many fluctuations in both curves. We have in particular
identified two events that we marked as “A” and “B”. In the “A”
commit, authored by a Google engineer, the number of rules sud-
denly dropped from 1,000 to 200; but the number of boxes jumped
from 214,000 to 2,315,000, an increase of more than 10×. We have
manually analyzed this commit, as well as the differences from the
previous commit, and found that this new commit associated all
types to a single domain—unconfineddomain. This new domain
allowed virtually any access to any object, and removed all other
individual access rules with the same subjects and objects, which
represents a clear break from past practice. Interestingly, we found
that this “unconfined domain” was present even in the original
version authored by NSA; but at that time, it was intended for some
special entities that should bypass all security enforcement, and
nothing was associated with it.

So what was Google trying to accomplish with this one commit?
Here is the original commit message:

Make all domains unconfined.
This prevents denials from being generated by
the base policy. Over time, these rules will be
incrementally tightened to improve security.

We are not able to find any external documentation for this dras-
tic decision, but we could draw inferences about what problems
they may have been facing. In 2012, Android passed iOS in market
share [30], having roughly double the market share of iOS in 2013.
Such drastic growth and intense competition may have created
pressures to ship code on time, with security necessarily a lower
priority. As the commit text suggests, Google had long-term plans
for improving its use of SEAndroid, but for now wasn’t planning on
using it for anything beyond the benefit of having it integrated at all,
allowing OEMs to begin experimenting with SEAndroid security
policies.

Indeed, Google did fix it later. The “B” arrows indicate changes to
the SEAndroid policy that drastically shrank the size of the “uncon-
fined domain”, and the general downward slope of the number of
boxes during this time period shows a diligent effort over 1.5 years
to ultimately eliminate the unconfined domain from the SEAndroid
policy. By the Android 6.0 release, the unconfined domain was no
longer in use.

We note the disconnect between the number of rules and the
number of boxes. Each of the “B” arrows shows a significant reduc-
tion in the number of boxes, yet there is no corresponding change
in the number of rules. This suggests an engineering process of
methodically adding focused rules to cover the needs of various ap-
plications that were previously satisfied by the unconfined domain.
After policy testing, large chunks of the unconfined domain could
be unnecessary and therefore removed. We see this in several large
downward steps in the number of boxes, as well as in the broader
downward slope during this time period.

As of 2018, Android is even bigger than before, there are more
participants than before, and the policy is no more changing rapidly,
so we do not expect that a similar event is happening, but this is

1

10

100

1,000

10,000

1 <10¹ <10² <10³ <10⁴ <10⁵ >=10⁵ Average

N
u
m

b
e
r

o
f
ru

le
s

Range of number of box per rule

4.3 4.4 5.0 6.0 7.0 8.0 9.0

Figure 4: Average number of boxes per rule.

a great example for us to suggest we need proper metrics on the
policy configuration as well as the documentation.
Takeaway #1: Such results illustrate the importance of consider-
ing rules and boxes as distinct metrics of policy complexity. Even
though in more recent years we see the rules and boxes growing
side by side, there is demonstrably no necessity that there be a
linear relationship between rules and boxes.

4.2 Number of boxes in a rule
As we noted earlier, the number of boxes or rules, by themselves,
do not necessarily tell a complete story about the complexity of a
given security policy. We next look at the number of boxes per rule,
which measures the complexity due to the use of macros and other
grouping features of SELinux security policies.

Figure 4 shows these ratios as of eachmajor Android release from
Android 4.3 through 9.0. We then group the results into frequency
buckets on a logarithmic scale, so “< 101” counts the number of
rules that touch 2 − 9 boxes, and “< 102” counts the number of
rules that touch 10 − 99 boxes. From this, we can see that we have
similar numbers of rules that touch a single box as we have rules
that touch 10 − 99 boxes, with some falloff once we consider rules
that impact 100 or more boxes.

For each frequency bin, we see an upward slope fromAndroid 4.3
through to 8.0. Keep in mind that the y-axis is log-scaled, so these
represent an exponentially growing number of rules in each bin,
which is consistent with our earlier measurements in Figure 3.

There is an interesting data point in Figure 4. In Android 9.0, the
bin 10000 − 99999 has grown from 1 to 5. The four new rules are:

allow domain dev_type:lnk_file r_file_perms;
get_prop(domain, core_property_type)
allow domain fs_type:dir getattr;
allow domain fs_type:filesystem getattr;

These four rules allow the attribute domain, which includes vir-
tually every subject, to read all “link files” (i.e., symbolic links), to
invoke the stat() system call on virtually every file and direc-
tories in the system, and to access all the “core properties” (i.e.,
configuration values similar to the registry in Microsoft Windows).
In addition, even though there are only five rules in this bin, they
impact more than 110, 000 boxes. Therefore, if there is ever a need
to deny the stat() call for a few specific processes, one would
need to carve out additional rules from these generic rules, e.g., by

633

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Im et al.

1

10

100

1,000

10,000

2 3 4 5 6 7 8 9 10 11 17 18 22 23

N
u
m

b
e
r

o
f
b
o
xe

s

Number of overlapped rules for a single box

01/04/2012 01/11/2013 05/02/2013 12/23/2014 03/02/2015 06/28/2016 07/12/2017

Figure 5: Number of rules mapped to a single box.

creating certain negative rules or splitting these generic rules into
smaller, more specific ones.

Lastly, we present the “average” number of boxes per rule across
each Android security policy snapshot. We see a spike in An-
droid 4.4, which is likely caused by the massive “unconfined” do-
main issue. It then drops for 5.0, and becomes relatively stable from
6.0 through 9.0. This suggests that Android team has achieved a
stable engineering discipline, in the sense that while the absolute
number of boxes is growing exponentially, the effort per box to
construct suitable policies is roughly constant across these three
releases.
Takeaway #2: Some small number of rules could touch a large num-
ber of boxes due to the abstraction features. Overall, the number of
boxes touched by a rule increased over time, but this ratio seems
to be stabilizing, despite the continued exponential growth in the
absolute number of rules and boxes.

4.3 Number of rules per box
As before, we define a box to be an atomic access control unit. Our
next concern is that multiple rules might speak about the same
box. Why is it bad to have multiple rules influencing the same box?
Consider the case of a security engineer, auditing the security policy,
who determines that one of the rules is over-broad and thus requires
some effort to fix the problem. If our engineer didn’t realize that
multiple rules allowed the same box, then this engineering effort
might not have its desired impact. Where a high ratio of “boxes
per rule” indicates the use of macros and grouping features, a high
ratio of “rules per box” instead indicates a degree of imprecision in
the design of the rules.

Figure 5 shows the rules per box for seven different commits at
dates selected across the range of Android. Since it is natural that
one box should be derived from the only one rule, we do not collect
these cases. As we see from the graph, there are a large number
of boxes derived from 2 or 3 rules for all the sampled commits.
More importantly, there is a trend that the tail (i.e., boxes with ten
or more rules that specify them) is growing over time. The most
popular box, generated by a remarkable set of 23 rules is:

system_server system_file:dir search;

Some example rules that generate this box include:
allow hal_gnss system_file dir {open... search};
allow hal_power system_file dir {open... search};
allow hal_thermal system_file dir {open... search};

-5,000

5,000

15,000

25,000

35,000

Jul-15 Jan-16 Jul-16 Jan-17 Jul-17 Jan-18

B
o
x

-
ru

le
 c

h
a
n
g
e
 r
a
ti
o

A

B

Figure 6: Ratio between change of rules and boxes.

...

HAL, the “hardware abstraction layer,” represents an important
boundary between the core Android distribution and the efforts
that OEMs make to port Android to their specific devices. These 23
HAL-related rules allow the same box, but it’s unclear whether this
was deliberate or accidental. Certainly, if a later analysis determines
that system_server permissions need to be customized, or that
this particular box needs to be denied, then each of these 23 rules
would need to be changed. Many of these rules say nothing at
all about system_server, at least not directly, but they impact it
nonetheless.

How did this happen? This is a consequence of the overlapping
rules in HAL-related macro functions and attributes, where macros
sometimes even expand into other macros. The HAL subsystem
would benefit from some degree of refactoring to simplify its secu-
rity policies, redesigning it to avoid so much overlap.
Takeaway #3: Most boxes only have a small number of rules, but a
few boxes contain more than ten rules, which could be an obstacle
for effective policy maintenance.

4.4 Ratio of rule vs. box changes
To further understand how commits affect the number of rules and
the number of boxes, we plot the ratio ∆B/∆R for each commit,
where ∆B is the number of added boxes, and ∆R is the number of
added rules. If ∆B (or ∆R) is negative, this means that a commit has
reduced the number of boxes or rules, respectively.

Figure 6 shows the results starting from July 2015—we did not
present earlier data due to the use of unconfineddomain. The aver-
age ratio is 120, meaning that the “box” metric is more sensitive to
changes. Moreover, we observed negative ratios, which means that
the number of rules has increased (or decreased) while the number
of boxes has decreased (or increased)—further evidence that their
relation is non-linear.

For the peak indicated by A, the ratio is larger than 35, 000. We
found that this is because Google added a new file type called
vendor_file_type, and added file-related rules to the domain sub-
ject, which includes virtually all processes. Another peak, as indi-
cated by B, has not affected the number of rules much; rather, a
new permission map is added to existing rules. For instance, a rule
allow domain system_file: file {execute read open};

would become the following:
allow domain system_file: file {execute read open map};

634

An Historical Analysis of the SEAndroid Policy Evolution ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

C

D

(a) Subjects

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

F

G

H

I

(b) Objects

Figure 7: Cumulative distribution of the age of types.

Takeaway #4: A change in the number of rules may not always lead
to a corresponding change in the number of boxes.

4.5 Summary
To summarize, the box and rule metrics have an interesting and
non-linear relationship; used in combination, anomalies and large
changes directly point to interesting and relevant engineering
changes in Android’s history, such as the introduction and eventual
elimination of Android’s use of unconfineddomain.

By expanding rules to boxes, we gain an instrument that is very
sensitive to policy changes. Even though the written rule changes
might be small, the box changes can be enormous. This allows us
to focus our attention on both local discontinuities, which point to
specific significant patches made to the SEAndroid policy, as well
as the broader multi-year trends in SEAndroid engineering. With
our work, Google and OEMs could institute security policy metrics
for SEAndroid. Our policy metrics could prove useful alongside
other traditional software engineering metrics (e.g., lines of code,
or bugs filed and fixed) to help Android project managers quantify
the evolving complexity of their system. Any non-trivial changes in
the metrics might imply significant policy differences, or perhaps
even inadvertent policy misconfigurations.

5 AN HISTORICAL ANALYSIS
As we mentioned before, the metrics we’ve devised allow us to
plot long-term patterns of the evolution of the SEAndroid security
policy. With these metrics, and the attendant timestamps, we can
examine a number of other trends over time.

5.1 The “age” of rules
To start, we want a metric that speaks to the degree of turnover
of the rules in SELinux policies. We can derive a given rule’s “age”
by identifying the Git commit when it was most recently changed.
The longer a rule has been unchanged, the older it must be. Rather
than using wall-clock timestamps, we instead use the order of the
commits. This means that, as the rate of commits has increased in
recent years, our age metric will “speed up” to reflect the increased
degree of activity.

Figures 7(a) and 7(b) show the cumulative distribution function
diagrams of the age of each SEAndroid subject and object, respec-
tively, across all commits on the master AOSP branch. The x-axis

is the age of the type, and the y-axis is the cumulative distribution.
This means that the types on the left side of the CDF are older, and
types on the right side are more recent. The arrows “A” and “E” in-
dicate the “oldest” subjects and objectives, respectively, which were
created at the very beginning of the policy by NSA; they account
for 20% of all the current types. The arrows “C” and “G” indicate the
introduction of the types for the hardware abstraction layer (“HAL”)
subsystem (e.g., hal_audio_ default and hal_drm_default). These
types were introduced in a single commit by Google in October
2016.

At arrow “B”, the types of system properties were separated
into multiple types such as audio_prop and bluetooth_prop. Before
this commit, all the properties were associated with a single type,
system_prop. This was presumably part of a privilege separation
engineering push within Android. Perhaps as part of the same effort,
at arrow “F”, all the system services were separated into multiple
types such as alarm_service and cpuinfo_service. Before this commit,
all the system services were assigned to a single type, system_service.
In this commit, a new attribute temp_system_server_service was
added and all the separated services were associated with the new
attribute; they inherited all the rules for the existing system_service
type. The temp_system_server_service attribute later disappeared,
perhaps unsurprisingly, given it is a “temporary” name.

At arrow “H”, a number of HAL related types were added in a
single commit. In this case, the new types were related to a newHAL
service which is now part of the version 8.0. Regions near arrows
“D” and “I” indicate a radical increase of the types for Android,
which are all part of the version 8.0 or later such as lowPAN (low-
power wireless personal area network) for Android IoT devices and
exported property feature for debugging annotations.

All of the commits at these labeled arrows after the initial NSA
version were authored by Google. This suggests that other ven-
dors are making only minor updates and tweaks, at least as far as
their contributions to Android AOSP are concerned; large-scale
engineering shifts are only happening at Google. We discuss more
about different vendor contributions in Section 5.5.
Takeaway #5: A non-trivial portion of the rules were present since
the beginning, although the majority of the rules have gone through
changes. Major events tend to affect a large number of rules, show-
ing up as jump points in the curve.

5.2 The increasing policy complexity
As shown in Figures 3 and 7, the complexity of the policy is ex-
ponentially increasing over time. Since the complexity is directly
related to its maintainability, we would like to evaluate and estimate
the growth pattern in more detail.

Figure 8 shows the linear scale fitted curves of three important
indicators for policy complexity, which are the number of types,
rules, and boxes. We generated this figure partly by extrapolating
the future complexity increase based on the current change trends.
For instance, extrapolating from the growth, the number of types
and the number of rules might double from today (mid-2018) to
mid-2020.

However, the fitted curve of the number of the boxes is different.
As shown in Figure 8(c), we fit different segments of the graph
with three different curves having different exponents. Not only

635

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Im et al.

0

500

1,000

1,500

2,000

2,500

Ja
n
/1
2

Ja
n
/1
4

Ja
n
/1
6

Ja
n
/1
8

Ja
n
/2
0

Ja
n
/2
2

(a) Types

0

2,000

4,000

6,000

8,000

10,000

Ja
n
/1
2

Ja
n
/1
4

Ja
n
/1
6

Ja
n
/1
8

Ja
n
/2
0

Ja
n
/2
2

(b) Rules

0

200,000

400,000

600,000

800,000

1,000,000

Ja
n
/1
5

Ja
n
/1
6

Ja
n
/1
7

Ja
n
/1
8

Ja
n
/1
9

Ja
n
/2
0

(c) Boxes

Figure 8: Fitted curves for types, rules, and boxes.

is the number of boxes growing, the exponent of growth is grow-
ing! Super-exponential growth of our security policies cannot be a
desirable attribute.

In Figure 8(c), we sampled important points after the “unconfined
domain” period, which is separated to 3 different curves with dif-
ferent exponents and constants, because there are multiple jumps
in the original curve due to the addition of new types, rules, and
macros in every version release. For example, a big jump happened
in 2017, due to the addition of HAL layer, as shown in Figure 7.
The slopes of the fitted lines of all those three different curves are
radically increasing.

This is a very important indication of the complexity increase—
the exponent seems to be increasing, which suggests that the policy
maintainability is getting more challenging as time goes on. Since
there is virtually no maintenance manual or any public documen-
tation about the policy, the device manufacturers, who need to
customize the policy for their products, would face an enormous
obstacle in terms of maintainability and evaluability for their prod-
uct releases. Even if major contributors such as Google have con-
sistently maintained internal documents, the trend still indicates
that their maintainability is likely to get more difficult over time.
Takeaway #6: The complexity of the SEAndroid policy is increas-
ingly super-exponentially, which complicates maintainability and
analysis.

5.3 The effect of multiple branches
Git is a distributed source-code management system, allowing sep-
arate organizations to maintain separate repositories with separate
histories, merging those histories whenever they want. This has
the curious property that the version of history that we see will
change over time as alternative histories are merged or rebased into
the mainline history. Among other issues, if two different branches
are merged into one, we cannot distinguish which was the mas-
ter and which was the merged branch without prior information;
instead, we only can see that two branches merged. This means
that tracking the “real” history of Android AOSP would require
us to maintain snapshots of the entire Git repository’s state, taken
over time, rather than just examining the newest repository for its
historical commits; this issue has been pointed out before by Bird et
al. [5] as one of the potential downsides of Git mining and analysis.
However, capturing all Git histories, continuously, is infeasible. To
at least understand the impact of these issues, we analyzed our

600

650

700

750

800

850

900

Jan-17 Feb-17 Mar-17 Apr-17 May-17

N
u
m

b
e
r

o
f
ty

p
e
s

Date

(a) Number of types captured in May 2017

600

650

700

750

800

850

900

Jan-17 Feb-17 Mar-17 Apr-17 May-17

N
u
m

b
e
r

o
f
ty

p
e
s

Date

(b) Number of types captured in September 2017

Figure 9: Comparison of the number of types in same period
of time captured in different time

snapshot of the Android repository before and after the “Oreo” An-
droid releases in August 2017, where we observed more than 1,500
commits added in the span of a few days.

Figure 9 shows the two different curves with the number of
SEAndroid types for the same period of time from January 2017 to
May 2017, but reflecting the “pre-Oreo” and “post-Oreo” repository
states. In Figure 9(a), we plot the “pre-Oreo” (late “Nougat”) data
from the end May 2017; in Figure 9(b), we plot the same time period
from the AOSP repository as of September 2017. These two curves
show the same upward trends but Figure 9(b) shows significantly
more noise. This is the result of a merge in the repository, performed
at the end of July, with the merged commits originally committed in
early 2017; these new commits only appeared on the master branch
after the “Oreo” release, despite predating it. Since the graph uses
the commit time as its x-axis, it shows fluctuations between the
pre- and post-Oreo branch merger. Needless to say, branch merge
events add additional complexity and noise to our data.

Most of the time-series graphs we derived in this paper have a
similar square-shaped noise, likely due tomerged branches. Because
we cannot track private branches prior to their merger, it is not
possible to distinguish which stream of the commit was the main-
stream of the master branch before the merge. The timestamps are
all we have, and thus we’re stuck looking at interleaved time-series
data, and thus the square-shaped noise. We can at least visually
interpret the tops and bottoms of the square-shapes as representing
the two original pre-merger commit streams.

This pattern shows that Google is continuing to develop Android
internally, with mergers into the publicly visible AOSP only hap-
pening on major releases. While Android OEMs will hopefully have
a more granular view of Google’s efforts, any external developer
trying to work with the SEAndroid security policy will observe
these giant shifts and will have to debug and merge their changes
with every Android release. Even for an Android OEM, Google’s

636

An Historical Analysis of the SEAndroid Policy Evolution ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

50

500

5,000

50,000

N
u
m

b
e
r
o
f
ru

le
s

a
n
d
 b

o
xe

s

Date

Bug reported

Announced to public

A

B

Numer of rules

Numer of boxes

Figure 10: Number of boxes related to media.

large changes presumably make it difficult for vendors to deviate
from AOSP’s SEAndroid policies in any meaningful way, as they
would still have to rebase and/or merge their changes. For example,
as we can see from the arrows in Figure 7, a single commit could
introduce many new types, which would represent a significant
integration challenge for an OEM trying to maintain a custom
policy.
Takeaway #7: The existence of multiple Git branches and merges
introduce significant measurement challenges, as well as signifi-
cantly impacting any third-party attempt to do their own work in
SEAndroid.

5.4 Case study: Stagefright
We now turn to examine a newsworthy security event in Android’s
history and see if we can observe evidence in the evolution of the
SEAndroid policy to respond to it.

To select the most suitable security events, we looked at 234
high-scoring Android CVEs in a third-party study [53]. 128 of them
are related to hardware and driver issues, which are beyond the
scope of SEAndroid. Next up are 62 vulnerabilities with the media
framework. There are also 22 Adobe Flash vulnerabilities, but we
cannot observe any artifacts of these in the SEAndroid policy, as
Flash is not part of AOSP. Therefore, media framework vulnera-
bilities seem like a good place for a case study. The most widely
publicized security event in the media framework, in particular,
was the “Stagefright” vulnerability.

Stagefright was found and reported to Google by security re-
searcher Joshua Drake in April 2015 [52]. Google shared the issue
with device manufacturers in May 2015, and the vulnerability was
publicly disclosed in August of that year. This vulnerability is a
simple integer overflow bug in the libstageflight library which
is used by the media framework. The attacker can inject carefully
crafted malicious code, in a media file, via any application which
uses Android’s media API, allowing the attacker to have arbitrary
malicious code execution in a context with elevated security priv-
ileges relative to any regular user-installed Android application.
Google patched the integer overflow bug and distributed the patch
in May 2015.

Figure 10 shows the number of the boxes and the number of the
rules, in log scale, with media-related subjects and objects from Jan-
uary 2015 to September 2017. Red vertical bars indicate significant
events in the history of the Stagefright vulnerability. The SEAn-
droid policy did not change much during the initial period when the
vulnerability was discovered, patched, and the fix was distributed.

1

10

100

1,000

10,000

Google NSA Samsung Tresys Intel LG Linaro Mitre Sony

N
u
m

b
e
r
o
f
co

m
m

it
s

Organization

4.3 4.4 5.0 6.0 7.0 8.0 9.0

Figure 11: Number of commits contributed by each organi-
zation.

However, both the number of boxes and the number of the rules
dramatically increased in early 2016, shown at arrow “A”. This was
a result of separating the media server into multiple distinct ser-
vices [10] such as mediaextractor, camera_server, mediadrm_server,
and mediacodecservice, each with more limited privileges than the
original monolithic service. Of note, all the media related services
lost the permissions to write a normal file. Additionally, they lost
the memexec permission.

Another jump, shown at arrow “B”, is related to the addition of
rules related to a new audio_server service. While the number of
rules changed was small, the number of boxes changed was much
larger, indicating the importance and reach of the changes.
Takeaway #8: SEAndroid policies are an essential mechanism for
implementing privilege separation, refactoring monolithic services
into smaller cooperating services with more limited permissions.
These policy changes are more visible in our “box” metrics than
when just looking at the number of rules.

5.5 Contributor comparison
Lastly, we perform a measurement to understand the composition
of contributors to the SEAndroid policy. The Git history associates
an email address with every commit. Ignoring the username and
focusing on the domain name, we can then associate each commit
with the author’s organization. In Figure 11, we show the number
of commits applied to each major Android release, as authored
by each organization. As might be expected, the vast bulk of the
commits are authored by Google, and Google’s commit frequency is
increasing over time, mirroring the exponentially growing numbers
of rule and boxes.

The NSA is the second most frequent committer, with a spike
of commits in the earlier Lollipop release, indicating some degree
of NSA assistance as Google moved away from the “unconfined”
domain design toward a more rigorous security policy.

We also see device and hardware manufacturers (Samsung, Intel,
LG, Sony). Each of these vendors maintains its own private policies
that they ship with their own devices. It is in a manufacturer’s
interest to contribute patches back to Google to avoid too much
drift between Google’s codebase and their own. Samsung stands
out, in this regard, for having zero visible commits in the latest
four versions of Android. (Perhaps Samsung contributed its policies

637

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Im et al.

to Google without sending Git pull requests. If so, a Google engi-
neer would have merged their changes by hand, and the resulting
commits would appear with a Google email address.)

The remaining organizations, Tresys, Linaro, and Mitre, repre-
sent two commercial consultancies and a Federally Funded Research
and Development Center (FFRDC) that works extensively with the
U.S. government. Tresys notably offers SELinux policy customiza-
tion as a service for paying customers [46].
Takeaway #9: Even though there are a number of non-Google con-
tributors, most of their commits are simply fixing typos or adding
missing simple rules which imply that only Google is leading the
project. In addition, all the important policy changes such as all the
arrow marks in Figures 3 and 7 are authored only by Google.

6 DISCUSSION
Next, we discuss three items related to our measurement study:
the Tizen system, the new Android Treble release, and Android for
Work.

6.1 SEAndroid vs. Smack
As we have seen, the SEAndroid policy is getting more complex
over time. Sophisticated policies may promise better security, but
they also make it challenging to reason about the configuration,
allowing innocent mistakes to creep into the design.

As a point of contrast, Tizen [28] uses a very different approach.
Just like Android, Tizen is a Linux-based operating system targeted
for mobile devices, and it uses a similar access control mechanism
to SEAndroid called Smack [40]. The biggest difference is that Tizen
doesn’t overload Unix user IDs to separate applications from one
another. Instead, all the apps for the same user use the same Unix
user ID, but with Smack labels to isolate the applications.

We performed a small-scale experiment by counting the number
of Smack rules in Tizen from its Git repository, and Figure 12 shows
the result. We have removed the Smack rules related to specific
applications to make a fair comparison with SEAndroid. We can see
that the number of rules fluctuates across versions, but it stabilizes
at roughly 2,000 in Tizen 3.0, which is radically smaller than the
number of rules in SEAndroid.

0

5,000

10,000

15,000

2.3 2.3.1 2.4 3.0 4.0

N
u
m

b
e
r
o
f
ru

le
s

Version

Figure 12: Number of Smack rules in Tizen releases

In Tizen 2.x, Smack is used for all the access control mechanisms
including application isolation and API permissions, with the num-
ber of rules tightly related to the number of features. Consequently,
the policy complexity is relatively high. The decrease in 2.3.1 and
increase in 2.4 in Figure 12 is simply due to the removal and addi-
tion of many OS features [25]. Tizen 3.0 [26] featured a complete

redesign of the Smack policy, providing only a minimal privilege
separation for the system resources and each application [24]: Unix
user IDs and Linux namespaces are used to isolate system services,
and a new module called Cynara [23] was added to manage per-
app API permissions (i.e., as in Android, users’ grants of specific
permissions to Tizen apps is no longer managed by the underlying
Smack system but is instead managed in a separate system). The
number of the rules in Tizen 3.0 and Tizen 4.0 is exactly the same:
2,134 rules, despite the otherwise significant changes between the
two major releases, including support for IoT devices, and coding
in C#/.NET [27].

Although there is no “correct” approach to access control config-
uration, and we take no position on whether Tizen is fundamentally
more or less secure than Android, Tizen demonstrates that MAC
policies can be deployed without the staggering complexity of mod-
ern SEAndroid policies. Of course, the very lack of fine-grained
permissions expressed in Tizen could as much represent the bene-
fits of simplicity as the pitfalls of over-simplification. Regardless,
the fact that both Android and Tizen are attempting to solve quite
similar problems in radically different ways suggests that there may
be lessons to draw from each to the benefit of the other.

6.2 Android Treble
In Android 8.0, Google introduced Treble [11] as a framework to
separate platform and manufacturer features. Treble’s main goal is
to make it easier for Google to ship updated Android systems by
creating a stable abstraction boundary between vendor features and
the Android distributions from Google. If done properly, we should
see a higher fraction of Android devices running recent releases of
Android, improving security for Android users and simplifying the
release engineering process for Android OEMs.

While a full summary of Treble is beyond the scope of this paper,
Treble does have an impact on SEAndroid. In prior releases, Android
vendors would start with Google’s AOSP SEAndroid policy and
make suitable modifications to support device-specific features,
perhaps porting changes forward from release to release. Treble
separates “vendor policies” from Google’s own system policy. Both
policies are separately compiled to a new common intermediate
language (CIL), and are then combined into a single policy as part
of the boot process. This allows Google to update its SEAndroid
policy without vendor intervention.

The AOSP version of the SEAndroid policy is effectively the same
as before, so it doesn’t impact the continuing growth of SEAndroid
policy complexity over time. But, now that vendor policies will be
separated out, as more vendors ship devices with Android 8.0 or
later, follow-on research to this paper will be able to look at vendor-
specific firmware images as opposed to AOSP releases, and such
future work will be able to make interesting comparisons between
vendors. Some vendors will inevitably make huge changes while
others change little or nothing. And, inevitably, some vendors will
introduce security flaws by enabling too many permissions. Also,
the new CIL format retains some macro and grouping structures,
allowing it to be far more amenable to analysis than the compiled
binary policies of earlier Android releases, where macros have been
completely expanded.

638

An Historical Analysis of the SEAndroid Policy Evolution ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

6.3 Android for Work
Android for Work is an enterprise security solution for “Bring-
Your-Own-Device” (BYOD) environment, which was introduced in
Android 5 and is still under active development. Android for Work
supports separated runtime environments between work applica-
tions and personal applications. This requires extensive resource
isolation, access control, and policy configuration. Knox, a similar
BYOD solution introduced by Samsung [37], also used SELinux
policies to support such access control. Android for Work would
certainly be amenable for the same sort of analysis that we did in
this paper, but the source code for it is not made available as part
of AOSP. If it does become available in the future, its evolution
over time would be an interesting subject to study, particularly as
the Android for Work developers must necessarily respond to and
integrate with changes in the larger SEAndroid policy.

7 RELATEDWORK
Our work is most related to two lines of existing work: analyses
of SEAndroid/SELinux policies, and general software-engineering
analyses of Git repositories.
SEAndroid/SELinux policy analysis. Understanding software
complexity is an important topic in the software engineering com-
munity, and a variety of useful metrics have been proposed over
the years, such as cyclomatic complexity [31] and Halstead vol-
ume [32]. However, in the context of SEAndroid/SELinux policy,
complexity measurements are much less studied; the dominant
metric is simply the number of rules in the policy source code [36].
Researchers have also used formal verification on SELinux poli-
cies [2, 14, 17, 18, 38, 39], artificial intelligence, information flow
integrity measurement [15, 16, 48], and functional tests [49]. Even
machine learning techniques have been used to analyze policies
based on SELinux denial logs from billions of devices [50].

Chen et al. [6] study the SEAndroid policy with the goal of iden-
tifying potential misconfigurations. They combine the SEAndroid
mandatory policies with the discretionary policies embedded in the
Android file system (i.e., Unix permission bits), giving them a more
complete look at what is actually allowed or denied in practice.
Both their work and ours present metrics and tools that might be
useful in the Android development process. One important differ-
ence, however, is that we focus on quantifying the complexity of a
policy snapshot, and on how the complexity evolves over time.
Git mining. Bird et al. [5] provide a comprehensive analysis on
the pros and cons of Git mining [5]. Notably, one of the challenges
they mention is the lack of a mainline repository when dealing
with multiple Git branches. Many other researchers have studied
Git repositories (see, e.g., [13, 44, 47]). Negara et al. [33] use Git
mining to detect patterns of code changes [33], German et al. [9]
and Jiang et al. [20] analyze Linux kernel repositories’ code over
time. In our work, we apply similar concepts toward the study of
SEAndroid’s evolution.

8 CONCLUSION
In this paper, we have performed the first historical analysis of the
SEAndroid policy to understand its evolution over time. We looked
at both “rules” as written in the SEAndroid policy and the “boxes”

those rules expanded to after processing all the macro and group-
ing operators. By plotting these metrics over time, we can observe
the exponential growth in the complexity of SEAndroid policies,
which will inevitably hit a brick wall of engineering complexity
and require new and novel approaches to manage this complexity.
Such approaches might lean on techniques from across many fields
of computer science. For instance, we might imagine policy “unit
tests” that express operations that are expected to succeed or fail
and can be verified alongside other such tests as part of any modern
software engineering and testing process. We might also imagine
combinations of approaches from AI and machine learning with
approaches from formal verification and model checking, not only
to find bugs and exploits, but more importantly to explain what
a given SEAndroid policy actually means. Without such under-
standing, it will remain challenging to point at any a policy and
definitively declare it to be “correct”.

9 ACKNOWLEDGMENT
We thank Robert Williams and Tomasz Swierczek for valuable ad-
vice and answeringmany of our questions as well as the anonymous
referees for their valuable feedback. This work was supported in
part by NSF grants CNS-1801884, CNS-1409401, and CNS-1314492.

REFERENCES
[1] AndroidOpen Source Project 2018. SEAndroid Policy Git Repository. Android Open

Source Project. https://android.googlesource.com/platform/system/sepolicy
[2] Myla Archer, Elizabeth Leonard, and Matteo Pradella. 2003. Analyzing Security-

Enhanced Linux Policy Specifications. Technical Report. Naval Research Lab
Center For Computer High Assurance Systems.

[3] Armis, Inc. 2017. The Attack Vector “BlueBorne” Exposes Almost Every Connected
Device. Armis, Inc. https://www.armis.com/blueborne/

[4] Lee Badger, Daniel F Sterne, David L Sherman, Kenneth M Walker, and Sheila A
Haghighat. 1995. Practical Domain and Type Enforcement for UNIX. In IEEE
Symposium on Security and Privacy. IEEE, IEEE, Oakland, CA, 66–77.

[5] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. 2009. The Promises and Perils of Mining Git. In 6th IEEE
International Working Conference on Mining Software Repositories (MSR ’09). IEEE,
IEEE, Vancouver, BC, Canada, 1–10.

[6] Haining Chen, Ninghui Li, William Enck, Yousra Aafer, and Xiangyu Zhang.
2017. Analysis of SEAndroid Policies: Combining MAC and DAC in Android. In
Proceedings of the 33rd Annual Computer Security Applications Conference. ACM,
ACM, Orlando,FL, 553–565.

[7] Nikolay Elenkov. 2014. Android Security Internals: An in-depth Guide to Android’s
Security Architecture. No Starch Press.

[8] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In 18th ACM Conference on Computer
and Communications Security (CCS ’11). ACM, Chicago, IL, 627–638. https:
//doi.org/10.1145/2046707.2046779

[9] Daniel M German, Bram Adams, and Ahmed E Hassan. 2016. Continuously
Mining Distributed Version Control Systems: an Empirical Study of How Linux
Uses Git. Empirical Software Engineering 21, 1 (2016), 260–299.

[10] Google 2017. Media Framework Hardening. Google. https://source.android.com/
devices/media/framework-hardening

[11] Google 2017. SELinux for Android 8.0. Google. https://source.android.com/
security/selinux/images/SELinux_Treble.pdf

[12] Google 2018. Android Open Source Project. Google. https://source.android.com
[13] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work

practices and challenges in pull-based development: the contributor’s perspective.
In Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, IEEE, Austin, TX, 285–296.

[14] Boniface Hicks, Sandra Rueda, Luke St Clair, Trent Jaeger, and Patrick McDaniel.
2010. A Logical Specification and Analysis for SELinux MLS Policy. ACM
Transactions on Information and System Security (TISSEC) 13, 3 (2010).

[15] Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: policy-reduced in-
tegrity measurement architecture. In Proceedings of the eleventh ACM symposium
on Access control models and technologies. ACM, ACM, Lake Tahoe, CA, USA,
19–28.

639

https://android.googlesource.com/platform/system/sepolicy
https://www.armis.com/blueborne/
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2046707.2046779
https://source.android.com/devices/media/framework-hardening
https://source.android.com/devices/media/framework-hardening
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Im et al.

[16] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. 2003. Analyzing integrity pro-
tection in the SELinux example policy. In Proceedings of the 12th conference on
USENIX Security Symposium-Volume 12. USENIX Association, USENIX Associa-
tion, Washington, DC, USA, 5–5.

[17] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. 2004. Resolving constraint con-
flicts. In Proceedings of the ninth ACM symposium on Access control models and
technologies. ACM, ACM, Yorktown Heights, NY, USA, 105–114.

[18] Trent Jaeger, Xiaolan Zhang, and Antony Edwards. 2003. Policy Management
Using Access Control Spaces. ACM Transactions on Information and System
Security (TISSEC) 6, 3 (2003), 327–364.

[19] Xuxian Jiang and Yajin Zhou. 2012. Dissecting android malware: Characterization
and evolution. In 2012 IEEE Symposium on Security and Privacy. IEEE, IEEE, San
Francisco, CA, USA, 95–109.

[20] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will My Patch Make It?
and How Fast? Case Study on the Linux Kernel. In 10th IEEE Working Conference
on Mining Software Repositories (MSR). IEEE, IEEE, an Francisco, CA, USA, 101–
110.

[21] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. 2013. A Survey
on Security for Mobile Devices. IEEE Communications Surveys & Tutorials 15, 1
(2013), 446–471.

[22] Butler W Lampson. 1974. Protection. ACM SIGOPS Operating Systems Review 8,
1 (1974), 18–24.

[23] Linux Foundation 2016. Security: Cynara. Linux Foundation. https://wiki.tizen.
org/Security:Cynara

[24] Linux Foundation 2016. Smack three domain model. Linux Foundation. https:
//wiki.tizen.org/Security:SmackThreeDomainModel

[25] Linux Foundation 2016. Tizen 2.x security architecture. Linux Foundation. https:
//wiki.tizen.org/Security/Tizen_2.X_Architecture

[26] Linux Foundation 2016. Tizen 3.0 security overview. Linux Foundation. https:
//wiki.tizen.org/Security/Tizen_3.X_Overview

[27] Linux Foundation 2017. Tizen 4.0 Public M1 Release Notes. Linux Foundation.
https://developer.tizen.org/tizen/release-notes/tizen-4.0-public-m1

[28] Linux Foundation 2018. Tizen | An open source, standards-based software platform
for multiple device categories. Linux Foundation. https://www.tizen.org/

[29] Peter Loscocco. 2001. Integrating Flexible Support For Security Policies into
the Linux Operating System. In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference. USENIX association, Boston, MA.

[30] Lisa Mahapatra. 2013. Android vs. ios: What’s the most popular mobile operating
system in your country. International Business Times. Retrieved March 1 (2013),
2014.

[31] Thomas J McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (Dec. 1976), 308–320.

[32] John C Munson and Taghi M Khoshgoftaar. 1989. The dimensionality of pro-
gram complexity. In Proceedings of the 11th international conference on Software
engineering. ACM, ACM, Pittsburgh, PA, USA, 245–253.

[33] Stas Negara, Mihai Codoban, Danny Dig, and Ralph E Johnson. 2014. Mining Fine-
grained Code Changes to Detect Unknown Change Patterns. In Proceedings of the
36th International Conference on Software Engineering. ACM, ACM, Hyderabad,
India, 803–813.

[34] Palo Alto Networks, Inc. 2017. Android Toast Overlay At-
tack: “Cloak and Dagger” with No Permissions. Palo Alto Net-
works, Inc. https://researchcenter.paloaltonetworks.com/2017/09/
unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/

[35] Redhat 2015. SELinux/audit2allow, Fedora Wiki. Redhat. http://fedoraproject.
org/wiki/SELinux/audit2allow

[36] Elena Reshetova, Filippo Bonazzi, Thomas Nyman, Ravishankar Borgaonkar, and
N Asokan. 2015. Characterizing SEAndroid Policies in the Wild. arXiv preprint
arXiv:1510.05497 (2015).

[37] Samsung 2017. Samsung Knox Security Solution. Sam-
sung. http://docs.samsungknox.com/samsung-knox-whitepaper/
Samsung-Knox-Security-Solution-Whitepaper.pdf

[38] Beata Sarna-Starosta and Scott D Stoller. 2004. Policy Analysis for Security-
Enhanced Linux. In Proceedings of the 2004 Workshop on Issues in the Theory of
Security (WITS). Washington, DC, USA, 1–12.

[39] Amit Sasturkar, Ping Yang, Scott D Stoller, and CR Ramakrishnan. 2006. Pol-
icy analysis for administrative role based access control. In Computer Security
Foundations Workshop, 2006. 19th IEEE. IEEE, IEEE, Venice, Italy, 13–pp.

[40] Casey Schaufler. 2008. The Simplified Mandatory Access Control Ker-
nel. http://schaufler-ca.com/yahoo_site_admin/assets/docs/SmackWhitePaper.
257153003.pdf.

[41] Z Cliffe Schreuders, Tanya Jane McGill, and Christian Payne. 2012. Towards
Usable Application-Oriented Access Controls: Qualitative Results from aUsability
Study of SELinux, AppArmor and FBAC-LSM. International Journal of Information
Security and Privacy 6, 1 (2012), 57–76.

[42] Stephen Smalley. 2005. Configuring the SELinux Policy. Technical Report 02-007.
NAI Labs. https://www.nsa.gov/resources/everyone/digital-media-center/
publications/research-papers/assets/files/configuring-selinux-policy-report.
pdf.

[43] Stephen Smalley and Robert Craig. 2013. Security Enhanced (SE) Android: Bring-
ing Flexible MAC to Android.. In NDSS, Vol. 310. Internet Society, San Diego, CA,
USA, 20–38.

[44] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and
Alexey Zagalsky. 2014. The (r) evolution of social media in software engineering.
In Proceedings of the on Future of Software Engineering. ACM, ACM, Hyderabad,
India, 100–116.

[45] Tresys Technology 2017. SELinux Policy Analysis Tools v4. Tresys Technology.
https://github.com/TresysTechnology/setools

[46] Tresys Technology 2017. Tresys :: Security Enhanced Linux. Tresys Technology.
http://www.tresys.com/solutions/security-enhanced-linux

[47] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexan-
der Serebrenik, Premkumar Devanbu, and Vladimir Filkov. 2015. Gender and
tenure diversity in GitHub teams. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems. ACM, ACM, Seoul, Republic of
Korea, 3789–3798.

[48] Hayawardh Vijayakumar, Guruprasad Jakka, Sandra Rueda, Joshua Schiffman,
and Trent Jaeger. 2012. Integrity walls: Finding attack surfaces from mandatory
access control policies. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security. ACM, ACM, Seoul, Republic of Korea,
75–76.

[49] RuowenWang, Ahmed M Azab, William Enck, Ninghui Li, Peng Ning, Xun Chen,
Wenbo Shen, and Yueqiang Cheng. 2017. SPOKE: Scalable Knowledge Collection
and Attack Surface Analysis of Access Control Policy for Security Enhanced
Android. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, ACM, Abu Dhabi, UAE, 612–624.

[50] Ruowen Wang, William Enck, Douglas S Reeves, Xinwen Zhang, Peng Ning,
Dingbang Xu, Wu Zhou, and Ahmed M Azab. 2015. EASEAndroid: Automatic
Policy Analysis and Refinement for Security Enhanced Android via Large-Scale
Semi-Supervised Learning.. In USENIX Security Symposium. USENIX Association,
Washington, DC, USA, 351–366.

[51] Giorgio Zanin and Luigi Vincenzo Mancini. 2004. Towards a Formal Model for
Security Policies Specification and Validation in the SELinux System. In Proceed-
ings of the Ninth ACM Symposium on Access Control Models and Technologies.
ACM, ACM, Yorktown Heights, NY, USA, 136–145.

[52] Nikias Bassen Zuk Avraham, Joshua Drake. 2015. Experts Found a Uni-
corn in the Heart of Android. Zimperium. http://blog.zimperium.com/
experts-found-a-unicorn-in-the-heart-of-android/

[53] Serkan Özkan. 2018. Google Android: List of Security Vulnerabilities. CVEde-
tails. https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_
id-19997/Google-Android.html

640

https://wiki.tizen.org/Security:Cynara
https://wiki.tizen.org/Security:Cynara
https://wiki.tizen.org/Security:SmackThreeDomainModel
https://wiki.tizen.org/Security:SmackThreeDomainModel
https://wiki.tizen.org/Security/Tizen_2.X_Architecture
https://wiki.tizen.org/Security/Tizen_2.X_Architecture
https://wiki.tizen.org/Security/Tizen_3.X_Overview
https://wiki.tizen.org/Security/Tizen_3.X_Overview
https://developer.tizen.org/tizen/release-notes/tizen-4.0-public-m1
https://www.tizen.org/
https://researchcenter.paloaltonetworks.com/2017/09/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/
https://researchcenter.paloaltonetworks.com/2017/09/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/
http://fedoraproject.org/wiki/SELinux/audit2allow
http://fedoraproject.org/wiki/SELinux/audit2allow
http://docs.samsungknox.com/samsung-knox-whitepaper/Samsung-Knox-Security-Solution-Whitepaper.pdf
http://docs.samsungknox.com/samsung-knox-whitepaper/Samsung-Knox-Security-Solution-Whitepaper.pdf
http://schaufler-ca.com/yahoo_site_admin/assets/docs/SmackWhitePaper.257153003.pdf
http://schaufler-ca.com/yahoo_site_admin/assets/docs/SmackWhitePaper.257153003.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/research-papers/assets/files/configuring-selinux-policy-report.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/research-papers/assets/files/configuring-selinux-policy-report.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/research-papers/assets/files/configuring-selinux-policy-report.pdf
https://github.com/TresysTechnology/setools
http://www.tresys.com/solutions/security-enhanced-linux
http://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
http://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html

