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Abstract

A representative democracy depends on a universally trusted voting system for
the election of representatives; voters need to believe that their votes count, and all
parties need to be convinced that the winner and loser of the election were declared
legitimately. Direct recording electronic (DRE) voting systems are increasingly
being deployed to fill this role. Unfortunately, doubts have been raised as to the
trustworthiness of these systems. This article presents a research voting system
and associated class project which was used to demonstrate several classes of bugs
that might occur in such a voting system unbeknownst to voters, with the difficulty
of detecting these bugs through auditing. The intent of this project is to justify the
mistrust sometimes placed in DRE voting systems that lack a voter-verifiable audit
trail.

1 Introduction

A fair, universally accessible voting system by which all citizens can easily and accu-
rately cast a vote is central to the democratic process. The United States presidential
election in 2000 provided a firsthand, very public look at what can happen when the
voting system is flawed. Following that election, there was renewed public interest in
reliable voting systems. People became enchanted by the computer’s siren song, and
voting systems in which computers play a significant role in recording and tabulating
votes saw increased interest and adoption. Much of this attention has been focused on
direct recording electronic(DRE) voting systems, in which paper ballots are eliminated
from the voting process entirely.

DRE voting systems have some inherent advantages over paper-based voting
schemes. Through a well-designed interface, DRE voting systems can help to elim-
inate voter error. For example, the voting system might seek confirmation if the voter



fails to cast a vote in a particular race, and the voting system can disallow multiple
votes in the same race. In addition, voting systems can allow people with a number of
disabilities to vote without needing human assistance.

Unfortunately, recent analyses of one popular vendor’s DRE voting system have
indicated numerous security oversights [17, 16]. Voters can cast multiple votes without
leaving any trace. Voters, as well as voting staff or others with access to the machine,
can perform actions that normally require administrative privileges, including viewing
partial results and terminating the election early. Furthermore, communications be-
tween voting terminals and the central server are not properly encrypted, allowing a
maliciousman in the middleto alter the content of the communications. The authors
found that an undisciplined approach to the development of this software, along with a
process that did not encourage anticipating or fixing security holes, led to this flawed
state. A closed-source approach to software development, in which the source code is
not released to the public for review and comment, only served to delay the necessary
scrutiny.

As daily headlines demonstrate, neither a commitment to software security nor an
open source approach to software development prevents software security holes from
arising. Microsoft’s significant “Trustworthy Computing” initiative, announced at the
beginning of 2002, has not stemmed the flow of security holes being found, including
holes exploited by high-profile worms such as Sobig [10] and Blaster [6]. Likewise,
open source projects have experienced their own share of vulnerabilities [3, 7, 8]. Soft-
ware developers and auditors, following normal industry software engineering prac-
tices, have proven unable to ship truly bug-free software. In general, producing soft-
ware free fromall security holes is a significantly harder task than an attacker’s goal:
to find and exploit a single bug.

This article presents Hack-a-Vote, a simplified research DRE voting system imple-
mentation initially developed to demonstrate the ease with which a Trojan horse could
be implemented in a voting system. We also discuss an associated course project, in
which students implemented their own Trojan horses in this system and then audited the
source code of their peers to find these Trojan horses. This article explores the potential
damage that could be caused by malicious individuals targeting voting machines, the
feasibility of finding weaknesses (deliberate or otherwise), and some solutions to mit-
igate the damage. Hack-a-Vote and the course assignment using it are freely available
online.1

We describe the design and implementation of Hack-a-Vote in detail in Section 2
and the logistics for the associated course project in Section 3. Section 4 describes the
malicious hacks that the students implemented and the auditing they did to detect these
hacks. In Section 5, we discuss these results in terms of real-world DRE implementa-
tions like that of Diebold. Finally, Section 6 presents our conclusions.



Figure 1: Hack-a-Vote PIN entry screen

Figure 2: Hack-a-Vote selection screen



Figure 3: Hack-a-Vote confirmation screen

Figure 4: Hack-a-Vote final tally screen



2 The Hack-a-Vote System

Our demonstration voting machine is a relatively simple Java Swing application,
weighing in at about 2,000 lines of code. It has a GUI front-end for interaction with the
user, a back-end for reading in election configurations and writing out ballot images,
and voting logic that drives the GUI and records votes. The GUI is shown in Figures 1
through 4.

When Hack-a-Vote is started, it first authenticates the user with a simple PIN au-
thentication scheme inspired by Hart Intercivic’s2 eSlate, which is used for elections in
Houston, Texas, among other places. With the eSlate system, voters first sign in to their
local voting precinct. Every group of eSlate voting terminals is connected via a wired
network to an election management console. The voter will approach the console and
an election official will print a 4-digit PIN. The voter then goes to any available voting
terminal and enters the PIN. The PIN is validated using the network and the voter can
then make their voting selections. Similarly, in the Hack-a-Vote implementation, the
server maintains a list of a few valid PINs which are displayed to the election admin-
istrator (we didn’t bother to print the PIN, although it would be an easy extension to
add). When a PIN is used, it is invalidated and a new PIN is randomly generated. The
PIN login screen is shown in Figure 1.

After authentication, the user is presented with a series of races. The voting screen
is shown in Figure 2. Once a vote has been cast in every race, there is an opportunity to
view and confirm a summary of the votes cast (see Figure 3). If the voter confirms the
selected candidates, the machine cycles back to the PIN entry screen for the next voter.
Otherwise, the machine returns to the first ballot and allows the voter to change her
selections. Once the election is closed, all of the votes are randomly shuffled, written
out to disk, and the final tally is displayed (see Figure 4).

In the original implementation of Hack-a-Vote, a Trojan horse was added to the
code that prepares votes for writing out to disk. We added a few extra command line
options to allow the user to indicate a candidate or political party that should receive
extra votes. With a configurable probability, votes for other candidates are modified
before being written out to disk and counted. We removed the cheating code to produce
the version that the students used — this involved removing only about 150 lines of
code from one file.

3 The Hack-a-Vote Assignment

The Hack-a-Vote project served to introduce students to some of the many faces of se-
curity, from the malicious hacker’s design of subtle attacks on a system, to the auditing
required to uncover those attacks, to the higher level challenges of designing a secure
system. The project also raises policy implications for how governments might regu-
late voting systems. The Hack-a-Vote project was inspired in part by Ross Anderson’s

1http://www.cs.rice.edu/˜dwallach/courses/comp527_f2003/voteproject.
html

2Seehttp://www.hartintercivic.com/ for more information.



UK lottery experiment, in which students were asked to consider the security threats of
running a national lottery [1].

Students in Comp527, a graduate level course in computer security, were split into
groups of two for a three part assignment. For the first phase of the project, groups took
on the role of developers at the Hack-a-Vote corporation, paid off by some nefarious
organization to rig an election without getting caught. No requirements were placed
on the kinds of malicious hacks requested by the organization, so long as the students
could justify how such a hack could be used to ruin or bias an election without being
detected. Solutions could run the gamut from denial of service attacks to arbitrary
biases in the final election tally. The groups spent two weeks peppering their voting
machines with Trojans horses, their stated goal being to hide discreet yet potent hacks.

Upon completion of the first phase, each group received modified voting systems
from two other, randomly selected groups in the same class. They now took on the
role of independent auditors with one week to find any security-critical flaws within
the altered code. During the second phase, any direct comparison of the code under
audit with the original code was prohibited. Students were required to rely on only
their memory of the voting machine and its functionality, a requirement enforced by
the university’s honor code. (Otherwise, any changes could easily be located using the
UNIX diff tool, giving the students greater powers than a genuine auditor might have
when studying a voting system.)

The focus shifted for the final phase of the voting project. Students had two and a
half weeks to fix a problem discovered by Kohno et al. in the smartcard authentication
protocol used in Diebold voting machines [17]. Students first had to consider what
security threats a voting system faces. They then designed an improved authentication
protocol and used Cryptyc [15], a cryptographic protocol type checker, to model and
verify this protocol. They also had to explain the protocol in terms of the security
threats it was designed to thwart.

4 Results

Although the hacks submitted by the groups were quite varied, they generally fell into
one of several categories. The most blatant were direct vote-manipulation hacks. A
second class of attacks broke the authentication mechanism either for PINs or for ad-
ministrative access. A third class of hacks were directed at defeating voter anonymity.
Finally, a number of projects implemented denial-of-service bugs.

4.1 Result Manipulation

The most blatant hacks involved direct manipulation of vote records. These include
changing previously-cast ballots to indicate a desired candidate and adding new ballots
in support of a desired candidate. Although these hacks tended to be the most obvious,
the groups employed numerous tricks to hide them. One blatant case of vote altering
added a percentage of votes to candidates of a particular party. This, however, was only
done on voting terminals with an ID greater than 2. The group presumed that black-



box testers would use at most two terminals for testing, thus allowing the hack to go
undetected.

Another group also included a number of direct vote manipulations. In order to
evade the black-box testers, this group only activated their hack after a pre-determined
number of votes has been cast, presuming the black box tester would not cast so many
votes in testing the system. The group also used the Java hash-code function to detect
votes for favorable candidates. Java defines ahashCode() method on every object,
typically used for storing objects in hashtables. This group determined when to bias a
candidate based on whether the hash of the candidate’s name was equal to a hard-coded
integer, providing more stealth than hard-coding that candidate’s name directly into the
source code.

One of the submitted projects had a very subtle bug that manipulated the election
system’s vote counter. When tallying the results of an election, Hack-a-Vote uses a
hashtable for each race, mapping a candidate to the number of votes that candidate
has received. By cleverly rewriting thehashCode() andequals() methods of
theCandidate class, this group made it appear to the hashtable that two candidates
were the same if one’s name was a prefix of the other. As a result, one of the candidates
would get all of the other candidate’s votes and the other candidate would not appear
in the tally at all. Such subtle changes can significantly influence the outcome of an
election yet be undetected by most forms of testing.

4.2 Broken Authentication

Groups also employed a number of techniques to break the authentication scheme built
into Hack-a-Vote. Among the most common were back-doors to vote without know-
ing a PIN. One group implemented a hack that allowed any PIN to successfully au-
thenticate after a non-numerical PIN had been entered. Other groups used numerical
constants already in the code, such as 10, the number of PINs active at any one time,
and 1776, the network port the console listens on, as back-door PINs. Yet another
group accepted any PIN longer than 9 digits. In this last hack, although the administra-
tion console returned an error message to the voting terminal, the voting terminal only
considered the numeric prefix of the error message. The numeric prefix, of course,
indicated the PIN was valid.

Related hacks allowed multiple votes with just one PIN. In one hack, aClass-
CastException could be triggered after the vote had been submitted but before
the login screen was displayed, allowing the voter to vote multiple times. In another,
clicking theStart overbutton, which is supposed to allow the voter to restart the voting
process, actually submitted the voter’s ballot in addition to allowing the voter to start
over.

Another group weakened the random-number generator used to generate PINs.
They seeded the random-number generator with the current second of the hour (rang-
ing from 0 to 3599). Given knowledge of two PINs generated within a sufficiently
narrow time range, a voter could fairly easily determine the initial seed and generate
new PINs. In addition, 20 PINs were held valid at a time, despite the election console
only displaying 10 PINs at a time. This change allowed a malicious voter to vote multi-
ple times without PINs mysteriously disappear from the console. This group also used



the current PIN to seed a random-number generator used to generate the back-door
administrator password, normally entered after a valid PIN to terminate the election.
This allowed any voter “in the know” to end the election on that voting terminal.

4.3 Violating Anonymity

A third area that the groups attacked was the randomization of ballots. The original
version of Hack-a-Vote shuffled the ballots before writing them to disk. Hacks ranged
from simply omitting the shuffle to employing a function called “shuffle” that actually
does nothing. One group tagged votes by the terminal ID of the voting terminal that
generated them, and shuffled the votes using a random-number generator seeded by the
terminal ID, allowing the original order of votes to be fairly easily recovered.

Finally, instead of reordering the votes, one group simply renumbered the ballots
and output the ballots in the order originally cast but with the new numbers. A casual
examination would not reveal the lack of anonymity, but the votes could easily be tied
back to the original voters, assuming the order in which they departed the polls was
observed.

4.4 Denial of Service

A number of groups implemented denial-of-service hacks in an attempt to selectively
disable the voting system. One group introduced a bug whereby a non-numeric PIN
would crash the authentication console, preventing others from authenticating their
PINs. Another group implemented a GUI trigger to disable theElection overbutton
that would normally be used by an authenticated administrator to end the election, write
the votes to disk, and compute a tally. Finally a group added a command-line option
to the voting terminal that disrupted communications with the authentication console,
effectively disabling the voting terminal.

4.5 Hiding Hacks in Java

Groups made proficient use of features of the Java language in hiding their hacks. A
number of groups used Java’s exception handling features to craft unusual control flows
and skip security checks. One group introduced aClassCastException in the
code that clears the ballot and generates the PIN login screen after a voter’s votes have
been submitted. The result was that the voter could vote multiple times. Another group
introduced anUnknownHostException in the communication between the voting
terminal and the authentication console, triggered upon the detection of an invalid PIN
being entered. As a result, all subsequent PINs would also not work. Finally, a group
introduced aNumberFormatException in the authentication console. Attempting
to authenticate using a PIN that is not a number would cause the election console to
crash, effectively disabling every voting terminal.

Another common technique for hiding hacks was to integrate them into Java’s GUI
event handler. In Java, a handler can be registered for any GUI item. On GUI events,
such as a mouse click, the handler runs in a separate thread. GUI event handlers were



used to trigger theElection overdenial of service discussed in Section 4.4 as well as the
ClassCastException bug described in Section 4.2 and in the previous paragraph.

Finally, groups used Java’s polymorphism to obscure their hacks. One group
added a variable namedBallotControl to theBallotControl class which con-
tains several important static methods. A call toBallotControl.saveVotes() ,
would appear to invoke a static method of classBallotControl , yet actually in-
voked an instance method of the interloper class. As described in Section 4.1, other
groups exploited the semantics of Java’s standardequals() and hashCode()
methods to effect their hacks.

4.6 Detection of Hacks

In analyzing the voting systems, different groups used different methodologies. Some
groups began with the largest file, an implementation of Windows-style initialization
file handling by Steve DeGroof.3 Others began by examining unusual or unexpected
code, including GUI event handlers or usage of Java reflection.

All but one of the hacks were found by at least one group analyzing a system. Ap-
proximately two out of every three hacks were caught by both groups analyzing a sys-
tem. The one hack that went entirely undetected was the denial-of-service command-
line option described in Section 4.4. Some of the hacks were detected, but the impli-
cations of these hacks were not accurately divined. This included the hack described
in Section 4.1 that used theequals() andhashCode() methods to remove a can-
didate from the final tally (although there was a bug in this hack which might have
impeded its analysis).

5 Discussion

A primary goal of the Hack-a-Vote project was to teach students (and others) about
security threats to real-world voting systems. Although the Hack-a-Vote system has
only a fraction of the size and complexity of real-world DRE voting systems, we can
consider the deviousness of the Trojan horses created by our students and the effective-
ness of their auditing to be indicative of what might be accomplished with real-world
voting systems.

5.1 Implications of Hacks

Section 4 describes a variety of hacks. If these hacks were to be implemented in a
real-world voting system, the results would be devastating. The impact of the vote
manipulation bugs, discussed in Section 4.1, is probably the clearest; these bugs could
result in a candidate being declared to be the winner even though that candidate didn’t
actually get the most votes. Similarly, the PIN authentication bugs discussed in Sec-
tion 4.2 could allow a voter to cast multiple votes, likewise affecting the outcome of
the election.

3Seehttp://www.mindspring.com/˜degroof/ for more information.



The denial of service hacks discussed in Section 4.4, as well as the administrator
authentication bug mentioned in Section 4.2, would result in a great deal of confusion
and require some time and expense to fix. If these bugs are exploited in a targeted fash-
ion, perhaps disabling voting machines in a neighborhood known to be highly partisan,
then those voters might never get the chance to cast their ballots, with the resulting
effect on the election’s outcome. Finally, the anonymity hacks discussed in Section 4.3
could allow someone with access to the raw results of an election to determine how an
individual voted, opening the door to bribery and coercion of voters.

5.2 Auditing

By design, the Comp527 project gave many advantages to the auditing groups that
real world auditors do not have. The auditors had the advantage of familiarity with
the unaltered code base, allowing for limited “mental diffs.” The code base was only
2,000 lines of well commented, clean code which easily lent itself to inspection. In
addition, students were instructed that drastic changes to the voting machines, such as
reimplementing major subsystems, was outside the spirit of the project.

On the other hand, the students are not full-time auditors. They were not devoting
eight or more hours each day for the week they were given to perform their analyses.
They also were responsible for analyzing two voting systems each, effectively halving
the time they could devote to analyzing each system. This deliberate lack of attention is
an imperfect simulation of the time available to real auditors of genuine voting systems.

One question these results raise is how many auditors are required to analyze a
system. In many cases, two student auditors did not successfully find all of the bugs.
In one case, even both groups (a total of four auditors) missed a bug. In a real world
system it is dificult to predict how many auditor-hours would be necessary before one
could be sure all security holes have been discovered.. The Diebold voting machine
code analyzed by Kohno et al. [17], for example, has over 50,000 lines of code, com-
pared to the 2,000 lines of code for Hack-a-Vote. According to an employee of SAIC,
which was contracted to independently review the Diebold voting machine’s code, it
would be “easy” to hide malicious code in such a big code base, and the chance of the
hack going undetected was 99.9% [13].

In fact, security holes have been found in many real-world systems used in produc-
tion by millions of people. In many of these cases, the bugs were found by curious
individuals without any particular time constraints. For example, security researchers
studying Java, as used in millions of web browsers, discovered that many security
checks that should have been enforced never were [11]. Despite Microsoft’s genuine
and intense efforts to find and remove security bugs in its code, Microsoft Windows
has also been hit by numerous security holes [5, 9]. Finally, note that open source sys-
tems have not been spared. For example, consider Sendmail, one of the most popular
Internet e-mail transfer agents. Although Sendmail has been around for nearly twenty
years with its source code visible to anybody, it has been hit by several recent security
holes [8].

Furthermore, even when vulnerabilities have been discovered and patched, those
patches are not always universally applied. Many of the high-profile and devastating
Windows worms, including Blaster [6] and Slammer [4], were based on security holes



that had been patched by Microsoft. With voting machines, such patches might not
be so easily applied. Many jurisdictions would require that the patched systems be
recertified, which is a costly and slow process. In fact, there have been reports of
voting machines in a recent election running uncertified software [2].

Auditing is not the only way for security holes to be discovered and patched. Tech-
niques such as proof-carrying code [20] and system-specific static analysis [14] can
discover particular types of vulnerabilities. A rigorous software engineering process
can also help avoid the malicious introduction of security vulnerabilities. In a recent
incident, an attempt to introduce a hack into the Linux kernel was discovered because
the modification did not pass through the appropriate channels [18]. Unfortunately,
though, there are no known, general-purpose techniques for proving that code is per-
fectly secure, much less rigorous definitions of what “perfectly secure” might actually
mean.

Auditing, security-directed automated code analysis, and rigorous software engi-
neering practices are powerful techniques for reducing the number and severity of
security flaws in a program. Although they should remain an important part of the
software development process, too much is at stake in an election to rely on these tech-
niques alone. While security flaws discovered in operating systems, servers, or user
level applications can have serious repercussions, if security flaws are found within
America’s voting machines, the repercussions can be catastrophic.

6 Conclusion

Electronic voting has been seen by many as a solution to the problems of traditional
paper-based voting schemes, as prominently seen in the 2000 United States presidential
election. While direct recording electronic (DRE) voting systems have some usability
advantages over traditional systems, they raise serious security concerns. We have
shown, using a “toy” voting system called Hack-a-Vote, how easily a purely electronic
voting system can be compromised and how difficult it can be for auditors to identify
and correct any “hacks” in the voting system, any of which could otherwise completely
compromise the results of an election.

The best solution is not to abandon the trend toward computerized voting but rather
to augment voting machines with a paper audit trail. With such a voter-verifiable audit
trail [19, 12], voting machines generate a paper printout of a voter’s vote which the ma-
chine cannot then alter; that paper becomes the canonical representation of the voters’
intent. Voters can verify that their votes are correctly indicated, and election officials
can count the printouts either mechanically or by hand to achieve a high degree of
accuracy. Such systems remove the software in the voting machines from the trusted
computing base of the election. With the inevitable bugs and potential for manipula-
tion, our elections need to generate the most accurate tallies possible. This can only be
achieved with election systems that are, by design, not dependent on the correctness of
their software.
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