
A Vision for Runtime Programmable Networks
Jiarong Xing
Rice University

Yiming Qiu
Rice University

Kuo-Feng Hsu
Rice University

Hongyi Liu
Rice University

Matty Kadosh
Nvidia

Alan Lo
Nvidia

Aditya Akella
UT Austin

Thomas Anderson
University of Washington

Arvind Krishnamurthy
University of Washington

T. S. Eugene Ng
Rice University

Ang Chen
Rice University

Abstract
Our community has made significant progress in develop-
ing programmable network infrastructure, starting from the
control plane and expanding to the data plane. As a latest
trend, network devices are becoming runtime programmable
while serving live traffic. This allows for reprogramming of
individual device programs at fine-grained timescales to add
or remove network functions. Many applications and services,
however, need control over a combination of devices, includ-
ing end host stacks, NICs, and switches, to accomplish their
goals. We lay out our vision for runtime programmable net-
works, building upon device-level features to provide live,
network-wide, runtime reprogramming. A whole-stack ap-
proach is needed with new programming models, compiler
support, and network management abstractions. We outline a
research agenda as a call to arms to the community.

CCS Concepts
• Networks → Programmable networks;

Keywords
Programmable networks

ACM Reference Format:
Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Hongyi Liu, Matty Ka-
dosh, Alan Lo, Aditya Akella, Thomas Anderson, Arvind Krish-
namurthy, T. S. Eugene Ng, and Ang Chen. 2021. A Vision for
Runtime Programmable Networks. In The Twentieth ACM Workshop
on Hot Topics in Networks (HotNets ’21), November 10–12, 2021,
Virtual Event, United Kingdom. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3484266.3487377

1 Introduction
Our community has made significant progress in making the
network infrastructure programmable. Network programma-
bility started with the control plane, but has rapidly expanded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets’21, November 10-12, 2021, Virtual Event, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487377

to the data plane. Programmable data plane devices, such as
switches [5, 7, 51], NICs [2, 8], FPGAs [4, 61], and software
targets [48], have gained popularity. This in turn has changed
the way in which we control and operate our networks. In a
programmable network, operators are capable of customizing
the network infrastructure end-to-end, by writing and deploy-
ing network programs at the host stacks, NICs, or switches.
Without any need for hardware upgrades, new functions can
be introduced and unused ones removed by reflashing the
devices with different programs.

Up until recently, one missing piece of this puzzle has
been runtime programmability. Existing work [16, 24, 38,
40, 42, 67] has extensively studied the opportunities afforded
by compile-time programmability—i.e., customizing device
behaviors by compiling a new network program and reflash-
ing the data plane before the device starts to serve traffic. In
compile-time programmable networks, devices that need to
be “repurposed” are first isolated by management operations
(e.g., draining traffic), reconfigured with a different program,
before they are redeployed to the network again. In contrast,
runtime programming of network devices, while keeping the
network disruption-free, enables a new paradigm. With run-
time programmable devices, reprogramming takes place at
much finer timescales hitlessly. The data plane is kept live
while program changes are reconfigured. Example runtime
programmable switches include Nvidia/Mellanox Spectrum
series (with P4) [66], Broadcom Trident4 and Jericho2 (with
NPL). Runtime programmable targets also includes FPGAs
and software switches, as they are inherently capable of live,
partial reconfiguration.

This paper investigates a vision that we call FlexNet, which
leverages the trend of device-level runtime programmability,
but considers broader design principles for an end-to-end
runtime programmable network.

FlexNet envisions a network infrastructure that shapeshifts
in response to real-time change. At any point, the end-to-end
network is optimally tuned for the current requirements and
traffic workloads. But if network requirements change in the
next minute, reconfigurations across devices will present the
network as a new infrastructure. This requires runtime pro-
gramming of individual devices as a building block, but also
synchronized reconfigurations across the network. Network
functions migrate seamlessly from one location to another,

91

https://doi.org/10.1145/3484266.3487377
https://doi.org/10.1145/3484266.3487377

both vertically (host stacks vs. NICs. vs. switches) and hori-
zontally (end-to-end network paths). They run atop devices
with different architectures, programming models, and per-
formance characteristics. Security defenses are summoned
to the network via precise injection to attack locations for
real-time mitigation, and they dynamically scale in and out
based on attack traffic volume. End-to-end, the network is
piloted by a central controller that maintains a global view
of the topology and traffic patterns, as well as the locations
and resource requirements of the network apps. The software
controller initiates centralized management operations, but
they are handed over to data plane hardware when feasible
for efficient, distributed execution.

While ambitious, we believe this goal is within reach. The
emergence of runtime programmable data planes points to the
technological feasibility. The need for runtime programma-
bility is evidenced by industry support from disparate ven-
dors [3, 5, 6, 10] and academic research that approximates
this capability [18, 30, 62, 70]. Though not yet pervasive
across all devices, commercial incentives for adding such
support in upcoming device models seem compelling. In fact,
we view runtime programmability as a crucial step to the
overall success of programmable networks. It simultaneously
addresses two critical needs in large networks: rapid innova-
tion of network features [23] and their deployment with high
network availability and near-zero downtime [28].

1.1 A Case for Runtime Programmable Networks

FlexNet enables a range of powerful use cases.
Dynamic apps. Programmable networks have found many

applications [29, 34, 38, 40, 50] but today’s apps are stati-
cally compiled into the network and cannot change at run-
time. Recent projects call out this limitation and propose
approximating solutions. They essentially work by baking
all needed logic at compile time but changing how it is used
from the control plane. DynamiQ [18] designs a monitoring
system where query operators are flexibly mapped at runtime
to compile-time allocated resources. Mantis [70] hardcodes
all runtime response logic at compile time, and invokes dif-
ferent responses at runtime by modifying control registers.
HyPer4 [30] emulates different network programs with a vir-
tualization layer. In contrast, runtime programmable networks
offer direct support for dynamic program changes. One does
not need to anticipate all network requirements in advance or
statically bake everything into the network.

Real-time security. Statically-baked network programs are
particularly problematic for security defenses [37, 42, 67–
69], as attacks are in nature fast-changing and difficult to
anticipate or provision for. Runtime programmable defenses
can be summoned into the network on-the-fly and retired
when attacks subside. Such defenses are also elastic, capable
of scaling, replicating, and migrating to other locations based
on changing attack strengths and patterns. Real-time defense
deployments also enable hot-patching the network against
zero-day attacks before a permanent fix is rolled out.

Live infrastructure customization. Whole-network infras-
tructure customization is challenging in today’s datacenters.
Deploying new transport protocols [39, 43], for instance, re-
quires changes not only to host kernels but also telemetry and
congestion control (CC) algorithms at the NICs and switches.
The optimal choice of CC algorithms further depends on the
mix of applications and workloads [49], which fluctuate dy-
namically at runtime. FlexNet enables quick, incremental
upgrades of the end-to-end infrastructure at runtime.

Tenant extensions. Cloud datacenters must accommodate
the varied networking requirements of each tenant. The num-
ber of virtual networks and their needs change rapidly due
to tenant churn. FlexNet allows tenants to inject customer-
specific network extensions (e.g., new CC algorithms at the
hosts and NICs, or custom security defenses at the switches)
as they arrive. Tenant departures trigger program removal to
trim the network and release unused resources.

1.2 Research Challenges

Realizing this vision requires a whole-stack approach that
rethinks how FlexNet networks should be programmed, opti-
mized, and managed at scale.

Whole-network programming. Building upon device-level
runtime programmability as a basis, FlexNet aims to enable
whole-network runtime programming end-to-end. This raises
interesting research questions on developing suitable pro-
gramming abstractions for vertical and horizontal function
distribution, which simultaneously take into account device
heterogeneity in terms of programming models, architectures
and performance characteristics.

Programming runtime changes. Specifying runtime cha-
nges is different from writing a new program from scratch. It
requires incremental programming support. FlexNet permits
runtime modifications to the “infrastructure” program (e.g.,
as supplied by the network operator), as well as “extension”
programs (e.g., provided by the tenants) in a modular manner.
Runtime changes are programmed in an incremental manner
to avoid intrusive modifications to the base program.

Compiling fungible programs. FlexNet also introduces
research opportunities for new network compiler designs. Ex-
isting compilers [27, 36] assume a non-fungible network, and
their primary concern is to bin-pack program elements into
resource-constrained devices. Runtime programmable net-
works enable a new operating point for compilers because
network resources become fungible. When they are not in
use, programs are removable to release resources. Therefore,
FlexNet compilers have the option of optimizing for alter-
native goals (e.g., performance, energy) even if they come
with resource overheads. Extra resources can be reallocated
or reclaimed elsewhere in the network.

Compiling runtime changes. Compiling changes into the
network must be done in a least-intrusive manner to avoid
significant resource reallocation and shuffling across the net-
work. Redistribution of program elements may also require
recompilation to a different target, as well as conversion and
migration of program state to a different representation.

92

(a) Whole-network programming (b) Programming runtime changes (c) Real-time network control

Control plane interface

App
migration

App
scaling

infrastructure.flex

lb

vlan
ACL

telemetry

L2+L3

tenant.flexupdate.flex

fungible datapath

dRPCs

Figure 1: The FlexNet vision and its key components. FlexNet provides a “fungible datapath” abstraction and enables
runtime whole-network programming. The compiler analyzes the program and runtime extensions, and distributes the
components vertically and horizontally. The network is piloted by a central controller for real-time management.

Piloting runtime programmable networks. Significantly
greater responsibility will fall unto the network management
system in a runtime programmable network. Traditional man-
agement and control platforms [33, 35, 55] are not up to the
task: they manage devices that perform tasks of the same
nature (i.e., forwarding), so their primary job is to optimize
the forwarding behavior (e.g., alleviate congestion via traf-
fic engineering). But as FlexNet devices host different apps,
which in turn consume variable amounts of resources, exhibit
different performance characteristics, and are capable of run-
time migration, their management becomes more challenging.
New control plane API operating at the “app” level is needed
for management. Control operations may also be handed over
to the data plane for efficient execution. Network control
needs to be aware of mixed deployments with compile-time
programmable and non-programmable elements. Consensus,
availability, and fault tolerance also need to be revisited for
developing logically centralized but physically distributed
controllers [13, 45].

In the rest of this paper, we outline the FlexNet vision and
a research agenda.

2 Runtime Programmability

Our vision is based upon the trend that network devices are
becoming runtime programmable. We describe the current
ecosystem of runtime programmable targets and their varying
degrees of flexibility.

Switches. Switch vendors are increasingly exposing run-
time programmability in their ASICs. Our recent work has
developed runtime programming support for Nvidia/Mellanox
Spectrum series of switches, reconfigurable in P4 [66]. While
keeping the device live, match/action tables can be added
and removed on-the-fly without packet loss. Parser states can
be similarly manipulated to add and remove header types
and protocols. Program changes complete within a second,
and during this transition, packets are either processed by the
new program or old one in a consistent manner. Broadcom
Trident4 and Jericho2 switches are runtime programmable

in NPL. Dynamic tables can be runtime reconfigured to per-
form a different task or change to different table keys without
downtime.

FPGAs and SmartNICs. FPGAs and SoC-based Smart-
NICs are inherently more flexible than switching ASICs, both
for compile-time and runtime reconfiguration. Live, partial
reconfiguration of FPGAs has been extensively studied in the
hardware community [60]. Traditional FPGA development re-
quires Verilog or VHDL programming, but when FPGAs are
used as network devices, high-level languages like P4 have
gained wide support. SoC-based SmartNICs, like Netronome
Agilio, Nvdia/Mellanox BlueField, and Pensando DPUs, en-
close general-purpose SoC cores and are programmable in C.
As of late, they also ship P4 compilers for the NICs. As SoC
cores are general-purpose in nature, no fundamental barrier
exists in supporting other languages (e.g., NPL). For FPGA
and SoC targets, their raw capability of runtime reconfigura-
tion carries over to the network programs that they host. For
instance, when hosting a P4 program on such a device, partial
reconfiguration primitives for tables and parsers would simi-
larly apply. On these targets, runtime programming primarily
requires more mature tooling support that specifically target
network programs in P4 or NPL.

Host kernels. The kernel network stack allows for runtime
customization via the eBPF framework [12]. eBPF kernel
extensions are constrained C programs, and can be injected
to the network stack without any disruption. Runtime recon-
figurations occur at eBPF program level, e.g., by reloading a
different program.

To summarize, runtime programmable variants exist for
all classes of popular targets for network programming. Al-
though their programming models, flexibility, and perfor-
mance characteristics vary, the existing ecosystem already
presents sufficient building blocks to develop end-to-end run-
time programmable networks. We believe the time is ripe to
explore this FlexNet vision.

3 Open Problems
An array of research challenges exists in the development of
runtime programmable networks. Figure 1 illustrates.

93

Scenario. In the ensuing discussion, we assume a generic
deployment scenario where the network infrastructure is op-
erated by its owner but individual tenants dynamically arrive
and depart. The network provider maintains an “infrastruc-
ture” program, which implements basic functions for the net-
work as well as utility functions for management and control.
Tenants provide “extension” programs that are dynamically
injected into and removed from the network. The infrastruc-
ture program forms a trusted base, and the extensions are
admitted by the network owner after access control validation.
Extension programs are isolated from each other and from
the infrastructure code via, e.g., VLAN-based isolation mech-
anisms. Tenant arrivals trigger the generation of new VLAN
configurations from the control plane, as well as infrastruc-
ture program changes to accommodate the new extensions.
Departures achieve opposite effects. All programs are contin-
uously updated in real time, and changes are integrated into
the network seamlessly without downtime.

3.1 Runtime Whole-Network Programming

From a whole-stack perspective, runtime network program-
ming goes much beyond programming packet processing
pipelines, e.g., in P4 [7], NPL [5], or their combination [27].
Vertically, host kernel stacks and SmartNICs expose general-
purpose programming models in C or restricted C (e.g., eBPF).
They are also capable of a wider range of network customiza-
tion tasks, e.g., custom congestion control [17] and transport
protocols [15, 31, 43], or TCP offloads [44]. While these
domain-specific tasks are also constrained in nature, they are
very different from packet-oriented processing. To enable
whole-network customization vertically and horizontally, new
programming models and abstractions are required.

Abstractions. We envision that a FlexNet program is writ-
ten against a network abstraction that hides away the details
of vertical and horizontal distribution, as well as device het-
erogeneity in terms of architectures, performance character-
istics, and programming models. The compiler analyzes the
program, and automatically splits it to the physical network.
Existing abstractions like the “one big switch” model [16]
serve similar goals for networking programming, but are in-
sufficient for capturing vertical implementations across host
stacks, NICs, and switches. They also do not model a network
infrastructure where resources can be reallocated, reclaimed,
and redistributed at runtime.

We call this abstraction a “fungible datapath”, which log-
ically models a whole-stack network device, including L2
and L3 functionalities, but also programmable transport pro-
tocols [15, 43] or even higher-layer offloads [40]. Under the
hood, it is implemented on a physical slice of the end-to-end
network. The compiler analyzes the datapath program and
determines which components should run where. Within a
fungible datapath, program components may freely migrate
and elastically scale in and out on different physical devices.
The shape and size of the physical slice are additionally regu-
lated by the network control policies and the negotiated SLAs.

Tenant datapaths are laid atop the infrastructure datapath with
proper access control isolation.

Programming languages. We envision that fungible data-
paths require a domain-specific language that mixes match/-
action-style packet processing and eBPF-style offloads, which
we will call FlexBPF. In our vision, FlexBPF should expose
a logical and constrained form of network state, organized
in key/value “maps”. The FlexBPF control flow and oper-
ations need to go well beyond matches and actions, so as
to fully leverage device programmability. With constrained
state, FlexBPF programs are analyzable to certify bounded
execution, well-behavedness, and to enable automated compi-
lation to constrained targets [72]. FlexBPF programs express
programmable congestion control, transport protocols, con-
strained higher-layer offloads, and packet-processing pipelines
in the fungible datapath.

The logical key/value maps maintain a virtualized view of
network state at different layers. Virtualizing network state is
crucial, as individual devices have drastically different ways
of implementing this state. Consider some examples. The
P4 language standard defines stateful registers and counters
as “extern” constructs that are up to the device vendor. PoF
devices expose a different abstraction: flow state instruction
sets [51]. Nvidia/Mellanox devices pursue yet another route:
stateful tables that are indexed with flow key, with flow in-
sertions and removals performed in the data plane [58]. If
a program assumes a specific way of state encoding (e.g.,
registers), function migration becomes difficult. In FlexBPF,
the compiler selects the proper state encodings for different
program components based on the target devices. Program
migration carries its state in this logical representation.

3.2 Programming Runtime Changes

Specifying runtime changes, whether updating the infras-
tructure program or injecting tenant extensions, presents a
different set of challenges. Runtime changes require incre-
mental programming and compilation support to minimize
intrusiveness.

Incremental upgrades. Updates to the infrastructure or
tenant programs, by themselves, need not specify a complete
network processing stack. They are simply additions, dele-
tions, or changes to the existing programs. Our goal is to
develop a domain-specific language that concisely specify
where, when, and how an existing FlexNet program is up-
dated. Programs in this DSL precisely model the changes
that need to be made, without having to re-specify the entire
stacks all over again. For instance, this DSL may expose name
matching utilities (e.g., via pattern matches on match/action
tables and actions) to programmatically select and modify the
firewall- or CC-related functions in the base program. The
FlexNet compiler jointly analyzes the pattern matching pro-
gram with the base program and regenerates program changes
exactly where needed.

Datapath composition. Runtime changes also include in-
jecting or removing an end-to-end tenant datapath. For these
situations, FlexNet needs to enable datapath composition.

94

Recent work [52] has developed modular, composable ab-
stractions for P4 programs (e.g., one modular for L2 pro-
cessing and another for L3). Similar properties are useful for
FlexBPF programs, but additional analyses are required—e.g.,
the tenant extensions have restricted access control permis-
sions; different tenants may inject logically-sharable code that
present optimization opportunities or conflicting datapaths
that need to be resolved.

3.3 Compiling Fungible Programs

Runtime programmable networks open up new operating reg-
imes for compiler design. Existing network compilers [27, 36]
assume that device resource limits are an unyielding con-
straint and primarily focus on bin-packing programs within
available resources. However, since a runtime programmable
network can dynamically remove unused functions, device re-
sources become fungible. This enables a new search space for
compiler optimizations. For instance, the FlexNet compiler
may operate in multiple iterations. If compiling a FlexNet
datapath to its resource slice fails, the compiler recursively
invokes optimization primitives for its datapath to perform re-
source reallocation and garbage collection, before attempting
another round of compilation.

Resource fungibility. Resource fungibility varies across
device architectures, and shuffling program elements may
also result in a physical datapath with different performance
characteristics.

(i) RMT. The RMT (reconfigurable match table) architec-
ture [19] adopts a pipeline model with a fixed number of
stages, and packets are processed by MA (match/action) ta-
bles stage by stage. Example switch ASICs that adopt this
architecture include Intel FlexPipe and Tofino. For Tofino,
resources in the same hardware stage are fungible. By adding
runtime support to reconfigure individual stages in a live man-
ner, tables can be potentially shuffled across stages and all
pipeline resources would become fungible.

(ii) dRMT. The disaggregated RMT architecture [22], on
the other hand, removes the static stage boundaries by dis-
aggregating compute from memory. A set of MA processors
execute a P4 program in a run-to-completion manner for each
incoming packet. MA table entries are physically separated
from the processors in SRAM or TCAM. Unrestricted by
stage boundaries, any processor can access any table, at any
point in the P4 program. Our previous work also builds upon
a similar architecture as implemented in the Nvidia/Mellanox
Spectrum model [66]. On this architecture, memory and ac-
tion resources are fungible due to disaggregation.

(iii) Tiles, Elastic Pipes. Tiled and Elastic Pipe architec-
tures, as adopted by Broadcom’s Trident4 and Jericho2, are
yet another class. For Trident4, hash and index tiles are re-
alized in SRAM; alongside TCAM tiles, they are exposed
to the programmer [10]. NPL programs determine inter-tile
connectivity and tile programmability. Jericho2’s Elastic Pipe
architecture, on the other hand, consists of a standard pipeline
of stages that is extended by a Programmable Elements Matrix

(PEM) [3]. On these architectures, fungibility occurs within
the same tile types and the PEM elements.

(iv) SmartNICs, FPGAs, and Hosts. Resources are essen-
tially fully fungible on these architectures.

Across the network, resources that lie on the same net-
work path are fungible as traffic flow through a sequence of
devices [27]. By co-desiging routing and placement mecha-
nisms for a logical datapath, more opportunities will open up
(e.g., via routing detours to a program component).

Performance and energy optimizations. Leveraging re-
source fungibility, the FlexNet compiler is able to explore
additional objectives beyond resource bin-packing. Resources
on switching ASIC, SmartNICs, FPGAs, and hosts, though
fungible, have different performance characteristics. There-
fore, our compiler must take performance SLA into consid-
eration when it maps a logical datapath to the physical in-
frastructure. In a similar spirit, different targets also have
varied energy consumption envelopes [57]. By leveraging this
fungibility layer, FlexNet is able to shuffle resource around
and optimize for the current workload regarding network en-
ergy consumption. Moreover, fungible resources also allow
for optimizations that trade performance/energy goals with
resource utilizations. Merging two match/action tables, for
instance, will lead to increased memory usage due to a table
“cross product”, but it saves one table lookup time and reduces
latency for packet processing on certain architectures.

Incremental recompilation. When compiling runtime ch-
anges into the network, FlexNet also needs to perform incre-
mental recompilation. FlexNet not only needs to generate
optimized programs, but also needs to minimize the amount
of resource reshuffling by identifying “maximally adjacent
reconfigurations” that lead to non-intrusive redistribution.
As resource shuffling may also affect datapath performance,
FlexNet needs to re-certifying SLA objectives as well. A fine
balance between compilation time and optimization levels
is necessary. For fast reactions to network changes, it may
be desirable to generate non-optimal implementations in a
shorter turnaround time.

3.4 Real-time Network Control

New network control and management systems are required
to effectively pilot runtime programmable networks. Exist-
ing designs, such as OpenFlow SDN controllers [33, 55] and
traditional network management systems [20, 21], are pri-
marily concerned with managing forwarding behaviors. In
these traditional networks, devices perform tasks of the same
natur—i.e., routing and forwarding—despite “micro-level”
device heterogeneity (e.g., differences in hardware vendors,
generations, or control interfaces). Therefore, network con-
trol primarily performs traffic engineering to alleviate conges-
tion [33] and carries out disruption-free network updates [55].
A runtime programmable network, however, requires a very
different kind of network piloting, as “macro-level” hetero-
geneity exists across devices that host different apps. Deciding
on optimal app locations, reasoning about app resource re-
quirements, elastic app scaling, resilient state replication, app

95

migration, as well as the traditional goal of managing routing
behaviors, are all up to the network management system.

Control plane abstractions. In FlexNet, we propose to
expose abstractions for app-level network management. The
P4Runtime standard [11] has a set of control plane API to
manage and interact with P4-capable devices, but they operate
at the data plane element level, e.g., manipulating counters,
meters, and table rules. This is a starting point, but FlexNet
also requires higher-level abstractions to manage the apps. For
instance, the controller is able to “name” in-network apps by
their URIs (instead of, say, IP addresses), and perform man-
agement operations using the URI as a handle (e.g., expand
a certain resource type). In other words, application-centric
abstractions are needed as first-class primitives. Their transla-
tion into lower-level commands (e.g., via P4Runtime) is done
automatically by the FlexNet management system.

Data plane execution. We envision that the network con-
trol operations are invoked by the control plane, but their
execution may take place partially or entirely in the data
plane. Unlike existing network control platforms [63] that
manage software-based entities, FlexNet controller needs to
efficiently manipulate in-network, data plane programs. These
apps process and produce linespeed data, and their internal
state also mutates per-packet at nanosecond timescales. If
all control operations are performed in software, many tasks
become extremely challenging or infeasible.

Consider migrating a stateful network app (e.g., one that
maintains a count-min sketch). As the sketch state is updated
for each packet, copying state via control plane software is
impossible [41]. Recent work has developed tools to per-
form state migration entirely in data plane [41, 65]. FlexNet
needs more control primitives of this kind that are realizable
in hardware data planes. In particular, in-network monitor-
ing, execution tracking, and diagnosis primitives will prove
useful for runtime programmable app management, as such
networks experience higher dynamics. These “utility” func-
tions for network control do not have a persistent footprint
inside the network, but are injected in real-time for mainte-
nance tasks and removed soon after. In mixed deployments
of runtime programmable, compile-time programmable, and
non-programmable devices, FlexNet also needs to account
for the topological locations of these network elements.

dRPCs. Realizing control operations in the data plane also
requires handling devices with different programming ca-
pabilities and performance characteristics. Since not every
device will support all operations, we envision that the infras-
tructure program will provide a set of data plane RPC services
for common utilities (e.g., app migration or state replication).
Tenant datapaths need not reinvent the wheel but rather invoke
these remote services via data plane RPC calls (dRPCs). Ten-
ant programs may also expose tenant-specific RPC services
that the infrastructure program can invoke. Service discov-
ery occurs either at control plane or via an in-network RPC
registry and discovery protocol in real time.

Fault tolerance and consistency. To detect and tolerate
device failures, the FlexNet controller replicates important
network state in a logical datapath across multiple physical
devices. State consistency is ensured via state replication and
update protocols [71]. Functional updates to a logical datap-
ath also need application-level, consistent packet processing,
which goes beyond controlling the order of rule updates [46],
and varied levels of consistency guarantees may apply [66]. It
is the network controller’s job to ensure that traffic in the data-
path is routed through the correct sequence of network devices
to receive processing. For large networks, logically central-
ized controllers are realized in physically distributed nodes,
which brings classic distributed systems concerns on con-
sensus and availability [13, 45]. In a runtime programmable
network, developing a new consistency model and enforcing
it across distributed controller nodes also raises interesting
research questions.

4 Related Work
Network programming. Recent work has developed support
for network programming both for single devices [5, 7] and
distributed environments [16, 27, 54]. Pronto [26] lays out
a vision for closed-loop network programming, observation,
and verification. FlexNet is closely related to these work, but
it investigates runtime network programmability.

Runtime reconfigurability. Runtime reprogrammability
has been studied in several contexts. The architecture com-
munity has extensively explored the capability of live, par-
tial reconfiguration of FPGAs [60]. The OS community has
considers kernel reconfiguration via eBPF [12, 59] and live
VM migration [9, 53]. The networking community has de-
veloped support for eBPF-style reconfiguration in XDP [32]
and SmartNIC offloads [1]. FlexNet explores the vision of
whole-network reconfigurability at runtime.

Active networks. Active networking research has laid the
foundation for many important developments in network pro-
grammability [14, 47, 56]. Recent work also revisits this
line of work and its progression to programmable networks
today [25, 64]. FlexNet is aligned with this vision and inves-
tigates the next step in making programmable networks even
more flexible than they are today.

5 A Call to Arms
Networking research is entering a “golden era”. Ossifica-
tion concerns start to dissipate and exciting possibilities are
opening up. Making the network infrastructure end-to-end
programmable at runtime is not only technologically feasible
today, but also pays great dividends. We believe that runtime
programmability is an attractive next step in our commu-
nity’s intellectual trajectory. Joint community efforts from
both academia and industry are needed in this endeavor.
Acknowledgments: We thank the anonymous reviewers for
their helpful feedback on this work. This work was partially
supported by NSF grants CNS-1565277, CNS-1717039, CNS-
1801884, CNS-1856636, CNS-1942219, and CNS-2105868.

96

References
[1] Agilio CX SmartNICs. https://www.netronome.com/products/agilio-cx

/.
[2] BlueField SmartNIC Ethernet. https://www.mellanox.com/products/Bl

ueField-SmartNIC-Ethernet.
[3] Jericho2. https://www.broadcom.com/products/ethernet-connectivity/

switching/stratadnx/bcm88850.
[4] Mellanox Innova-2 Flex Open Programmable SmartNIC. https://www.

mellanox.com/products/smartnics/innova-2-flex/.
[5] nplang. https://github.com/nplang.
[6] Nvidia/Mellanox Spectrum Ethernet Switches. https://www.nvidia.c

om/en-us/networking/ethernet-switching/spectrum-sn4000/.
[7] The P4 language repositories. https://github.com/p4lang.
[8] SmartNIC Overview - Netronome. https://www.netronome.com/prod

ucts/smartnic/overview/.
[9] Supporting live migration of vms communicating with bare-metal rdma

endpoints. https://www.openfabrics.org/wp-content/uploads/2021-wo
rkshop-presentations/402_Hansen_PVRDMA.pdf.

[10] Trident4 boosts enterprise switch capacity to 12.8 terabit. http://www.
gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-
capacity-to-128-terabit.html.

[11] P4Runtime. https://p4.org/p4-runtime/.
[12] What is eBPF? https://ebpf.io/.
[13] A. Akella and A. Krishnamurthy. A highly available software defined

fabric. In Proc. HotNets, 2014.
[14] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. j Kakkar, A. D.

Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith.
The SwitchWare active network architecture. IEEE Network, 12(3):29–
36, 1998.

[15] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pFabric: Minimal near-optimal datacenter transport. In
Proc. SIGCOMM, 2013.

[16] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
SNAP: Stateful network-wide abstractions for packet processing. In
Proc. SIGCOMM, 2016.

[17] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and
D. Wentzlaff. Enabling programmable transport protocols in high-speed
NICs. In Proc. NSDI, 2020.

[18] R. Bhatia, A. Gupta, R. Harrison, D. Lokshtanov, and W. Willinger. Dy-
namiQ: Planning for dynamics in network streaming analytics systems.
arXiv preprint arXiv:2106.05420, 2021.

[19] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review, 43(4):99–110, 2013.

[20] X. Chen, Y. Mao, Z. M. Mao, and K. van der Merwe. Declarative
configuration management for complex and dynamic networks. In Proc.
CoNEXT, 2010.

[21] X. Chen, Z. M. Mao, and J. V. der Merwe. PACMAN: a platform
for automated and controlled network operations and configuration
management. In Proc. CoNEXT, 2009.

[22] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, et al. drmt:
Disaggregated programmable switching. In Proc. SIGCOMM, 2017.

[23] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs, D. Ru-
binstein, E. C. Zermeno, E. Rubow, J. A. Docauer, et al. Andromeda:
Performance, isolation, and velocity at scale in cloud network virtual-
ization. In Proc. NSDI, 2018.

[24] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. NetPaxos:
Consensus at network speed. In Proc. SOSR, 2015.

[25] N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An intel-
lectual history of programmable networks. ACM SIGCOMM CCR,
44(2):87–98, 2014.

[26] N. Foster, N. McKeown, J. Rexford, G. Parulkar, L. Peterson, and
O. Sunay. Using deep programmability to put network owners in
control. SIGCOMM Comput. Commun. Rev., 50(4):82–88, 2020.

[27] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, and M. Yu. Lyra: A cross-platform language and compiler for
data plane programming on heterogeneous ASICs. In Proc. SIGCOMM,
2020.

[28] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. Evolve
or die: High-availability design principles drawn from Google’s network
infrastructure. In Proc. SIGCOMM, 2016.

[29] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-
inger. Sonata: Query-driven streaming network telemetry. In Proc.
SIGCOMM, 2018.

[30] D. Hancock and J. van der Merwe. HyPer4: Using P4 to virtualize the
programmable data plane. In Proc. CoNEXT, 2016.

[31] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, and M. Wöjcik. Re-architecting datacenter networks and stacks
for low latency and high performance. In Proc. SIGCOMM, 2017.

[32] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller. The express data path: Fast programmable
packet processing in the operating system kernel. In Proc. CoNEXT.

[33] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
WAN. In Proc. SIGCOMM, 2013.

[34] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D. Walker.
Contra: A programmable system for performance-aware routing. In
Proc. NSDI, 2020.

[35] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined WAN. In Proc. SIGCOMM, 2013.

[36] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling packet
programs to reconfigurable switches. In Proc. NSDI, 2015.

[37] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo. Pro-
grammable in-network security for context-aware BYOD policies. In
Proc. USENIX Security, 2020.

[38] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula: Scalable
load balancing using programmable data planes. In Proc. SOSR, 2016.

[39] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu. Hpcc: High precision
congestion control. In Proc. SIGCOMM, 2019.

[40] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya.
IncBricks: Toward in-network computation with an in-network cache.
In Proc. ASPLOS, 2017.

[41] S. Luo, H. Yu, and L. Vanbever. Swing State: Consistent updates for
stateful and programmable data planes. In Proc. SOSR, 2017.

[42] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev. NetHide:
Secure and practical network topology obfuscation. In Proc. USENIX
Security, 2018.

[43] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A receiver-
driven low-latency transport protocol using network priorities. In Proc.
SIGCOMM, 2018.

[44] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. AccelTCP: Accelerating
network applications with stateful TCP offloading. In Proc. NSDI,
2020.

[45] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker. SCL:
Simplifying distributed SDN control planes. In Proc. NSDI, 2017.

[46] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent updates
for software-defined networks: Change you can believe in! In Proc.
HotNets, 2011.

[47] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell,
and C. Partridge. Smart packets for active networks. In Proc. OpenArch,
1999.

[48] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford. PISCES: A programmable, protocol-independent software
switch. In Proc. SIGCOMM, 2016.

[49] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan,
S. Clark, M. M. K. Martin, M. McLaren, P. Chandra, R. Cauble, H. M. G.
Wassel, B. Montazeri, S. L. Sabato, J. Scherpelz, and A. Vahdat. 1RMA:

97

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88850
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88850
https://www.mellanox.com/products/smartnics/innova-2-flex/
https://www.mellanox.com/products/smartnics/innova-2-flex/
https://github.com/nplang
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://github.com/p4lang
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://www.openfabrics.org/wp-content/uploads/2021-workshop-presentations/402_Hansen_PVRDMA.pdf
https://www.openfabrics.org/wp-content/uploads/2021-workshop-presentations/402_Hansen_PVRDMA.pdf
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
P4 Runtime
https://ebpf.io/

Re-envisioning remote memory access for multi-tenant datacenters. In
Proc. SIGCOMM, 2020.

[50] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith. Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *flow. In Proc. USENIX ATC, 2018.

[51] H. Song. Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane. In Proc. HotSDN. ACM,
2013.

[52] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster. Composing
dataplane programs with `p4. In Proc. SIGCOMM, 2020.

[53] R. Stoyanov and M. J. Kollingbaum. Efficient live migration of linux
containers. In International Conference on High Performance Comput-
ing. Springer, 2018.

[54] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,
S. Burad, A. Dehon, and B. T. Loo. Flightplan: Dataplane disaggrega-
tion and placement for P4 programs. In Proc. NSDI, 2021.

[55] P. Sun, A. Arefin, R. Mahajan, J. Rexford, L. Yuan, and M. Zhang. A
network-state management service. In Proc. SIGCOMM, 2014.

[56] D. L. Tennenhouse and D. J. Wetherall. Towards an active network
architecture. ACM SIGCOMM CCR, 26(2):5–18, 1996.

[57] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman. The
case for in-network computing on demand. In Proc. EuroSys, 2019.

[58] A. Tulumello, M. Bonola, S. Pontarelli, M. Kadosh, and Y. Piasetzki.
Extending P4 to Realize a Scalable Flow Caching Mechanism. https:
//opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-A
ngelo-Tulumello-Slides.pdf, 2021.

[59] M. A. Vieira, M. S. Castanho, R. D. Pacífico, E. R. Santos, E. P. C.
Júnior, and L. F. Vieira. Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications. ACM Computing Surveys
(CSUR), 53(1):1–36, 2020.

[60] K. Vipin and S. A. Fahmy. FPGA dynamic and partial reconfiguration:
A survey of architectures, methods, and applications. ACM Comput.
Surv., 51(4), 2018.

[61] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon. P4FPGA: A rapid prototyping framework for P4. In
Proc. SOSR, 2017.

[62] T. Wang, X. Yang, G. Antichi, A. Sivaraman, and A. Panda. Isolation
mechanisms for high-speed packet-processing pipelines. arXiv preprint
arXiv:2101.12691, 2021.

[63] Y. Wang, E. Keller, B. Biskeborn, J. Van Der Merwe, and J. Rex-
ford. Virtual routers on the move: live router migration as a network-
management primitive. ACM SIGCOMM Computer Communication
Review, 38(4):231–242, 2008.

[64] D. Wetherall and D. Tennenhouse. Retrospective on "towards an
active network architecture". SIGCOMM Comput. Commun. Rev.,
49(5):86–89, Nov. 2019.

[65] J. Xing, A. Chen, and T. E. Ng. Secure state migration in the data plane.
In Proc. SIGCOMM SPIN, 2020.

[66] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen. Runtime programmable switches. In Proc. NSDI (to
appear), 2022.

[67] J. Xing, Q. Kang, and A. Chen. Netwarden: Mitigating network covert
channels while preserving performance. In Proc. USENIX Security,
2020.

[68] J. Xing, W. Wu, and A. Chen. Architecting programmable data plane
defenses into the network with fastflex. In Proc. HotNets, 2019.

[69] J. Xing, W. Wu, and A. Chen. Ripple: A programmable, decentralized
link-flooding defense against adaptive adversaries. In Proc. USENIX
Security, 2021.

[70] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive programmable
switches. In Proc. SIGCOMM, 2020.

[71] L. Zeno, D. Ports, J. Nelson, and M. Silberstein. SwiShmem: Dis-
tributed shared state abstractions for programmable switches. In Proc.
HotNets, 2020.

[72] K. Zhang, D. Zhuo, and A. Krishnamurthy. Gallium: Automated soft-
ware middlebox offloading to programmable switches. In Proc. SIG-
COMM, 2020.

98

https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Angelo-Tulumello-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Angelo-Tulumello-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Angelo-Tulumello-Slides.pdf

	Abstract
	1 Introduction
	1.1 A Case for Runtime Programmable Networks
	1.2 Research Challenges

	2 Runtime Programmability
	3 Open Problems
	3.1 Runtime Whole-Network Programming
	3.2 Programming Runtime Changes
	3.3 Compiling Fungible Programs
	3.4 Real-time Network Control

	4 Related Work
	5 A Call to Arms
	References

