
Detecting and Resolving PFC Deadlocks with ITSY
Entirely in the Data Plane

Xinyu Crystal Wu, T. S. Eugene Ng
Rice University

Abstract—The Priority-based Flow Control (PFC) protocol is
adopted to guarantee zero packet loss in many high-performance
data centers. PFC, however, can induce deadlocks and in severe
cases cause the entire network to be blocked. Existing solutions
have focused on deadlock avoidance; unfortunately, they are
not foolproof. Therefore, deadlock detection is a necessity. We
propose ITSY, a novel system that correctly detects and resolves
deadlocks entirely in the data plane. It works with any network
topologies and routing algorithms. Unique to ITSY is the use of
deadlock initial triggers, which contributes to efficient deadlock
detection, mitigation, and recurrence prevention. ITSY provides
three deadlock resolution mechanisms with different trade-off
options. We implement ITSY for programmable switches in the
P4 language. Experiments show that ITSY detects and resolves
deadlocks rapidly with minimal overheads.

I. INTRODUCTION

Driven by demand for ultra-low latency, high through-
put network applications with low CPU overhead, lossless
networks are widely deployed in modern data centers and
cloud environments [44]. One typical implementation of such
networks is lossless Ethernet, an attractive option to public
cloud providers for supporting Remote Direct Memory Access
(RDMA). For example, Microsoft Azure [29] and Alibaba
Cloud [3] have adopted RDMA over Converged Ethernet on
a large scale in their data centers to speed up the performance
of processing large amounts of data and achieve minimal
CPU overhead. Emerging distributed computing platforms
and technologies such as FaRM [12], TensorFlow [1], and
CNTK [30] also exploit RDMA.

Lossless Ethernet relies on hop-by-hop Priority-based Flow
Control (PFC) to prevent buffer overflow [20]. The key idea
is, when the queue length at a switch exceeds a pre-defined
threshold, it sends a PFC pause frame to stop data transmis-
sion from the upstream switch; when the queue length falls
below the threshold, it sends a PFC resume frame. Although
effective at eliminating packet loss, PFC can induce a problem:
deadlocks caused by cyclic buffer dependency (CBD), where
no packets in the cycle can be propagated. Once deadlocks
occur, PFC pause frames could spread to significant parts of
the network fabric, causing a large percentage of flows to stop
transmission. In the worst case, all ports along all paths could
be paused and the whole network could be blocked.

Many large cloud providers have confirmed that deadlocks
are common in practice [17], [33], [36]. Deadlocks could
happen when routing rules form a loop [21], but it is not
a unique product of routing loops—recent work has shown
that even for tree-based topology with up-down loop-free
routing, deadlocks could still occur due to link failures [28],

[38], [42], complex network updates [21], port flaps [26], and
misconfigurations [22]. Furthermore, deadlocks do not recover
automatically even after the problems (e.g. transient loop) that
caused the deadlock formation have been fixed [18].

Approaches to combat deadlocks fall into two categories:
avoidance and detection/resolution. On one hand, most recent
research efforts focus on deadlock avoidance [10], [11], [18],
[19], [25], [33], [34], [40], [44], but none of them is fool-
proof (see §II for discussions). Since no avoidance method
can absolutely prevent deadlocks, an efficient and accurate
deadlock detection method is a necessity. On the other hand,
existing methods for detecting and resolving deadlocks in
networks [27], [35] are insufficient to meet today’s stringent
performance requirements as they operate in the control plane
at an inherently much longer time-scale than the high-speed
data plane (see §II for discussions).

In this paper, we propose ITSY—a novel, fast, and effi-
cient deadlock detection and resolution mechanism entirely
performed in the data plane. ITSY is compatible with any
network topologies and routing protocols. Rather than contin-
ually monitoring the throughput and queue occupancy of each
switch port which incurs high overhead, ITSY only triggers
the detection process when pause events happen. Instead of
recording information for each switch in the traversed network
path, ITSY stores a small amount of information at switches
independent of the path length. ITSY also provides a basis
to analyze the initial trigger of a deadlock, which helps to
address deadlock recurrence. Different deadlock resolution
mechanisms are provided with different memory usage, data
complexity, and traffic modulation trade-offs, and network
operators could choose based on their own preferences. We
have implemented ITSY for programmable switches in the
P4 language [9]. We experimentally compare ITSY against
existing solutions and find that ITSY can detect deadlocks
accurately with many times shorter reaction time and lower
overhead. We demonstrate the benefit of resolving the initial
trigger for deadlock recurrence prevention. We further ex-
perimentally explore the quantitative trade-offs between the
deadlock resolution mechanisms to guide network operators
to choose a most suitable option.

II. MOTIVATION

A. Deadlock Avoidance - Not Foolproof

Restricted routing. The most common solutions for dead-
lock avoidance are to restrict routing paths and avoid the
formulation of CBD [11], [34]. However, routing restrictions
not only waste link bandwidth and reduce throughput [18], but

also are incompatible with some topologies [27] and routing
protocols such as OSPF and BGP [36]. Furthermore, when
some links are down, rerouting could still create CBD and
lead to deadlocks [26], [42].

Buffer management. Another method is to assign packets
different priorities hop-by-hop and put packets into different
buffers accordingly [40]. The required number of priorities
increases with the network scale. However, since the lossless
nature of PFC requires sufficient buffer space for in-flight
packets before pause message takes effect, only two to three
lossless priorities can be used in practice even for switches
with eight traffic classes, especially with the trend toward
shallow buffers in modern data centers [16], [19], [43].

PFC pause frame restrictions. Recent proposed congestion
control [10], [31], [44] can reduce the possibility of pause.
Also, operators can limit pause frame propagation by assigning
different PFC thresholds to switches based on their topological
positions [18]. Although these methods can reduce the possi-
bility of a deadlock, they cannot absolutely prevent deadlocks.

TTL-based mitigation. Under specific fat-tree topologies,
it is possible to adopt a small TTL value that guaran-
tees no packets can traverse a routing loop before getting
dropped [18]. Although this method could eliminate packets
traversing routing loops (one of the root causes for deadlocks),
it only works for specific topologies and cannot prevent
deadlocks formed by other root causes like link failures.

Bandwidth reservation. Tagger [19] requires to reserve the
bandwidth for lossless packets forwarded through a list of
pre-defined paths. However, the whole network is no longer
lossless since even under normal network states, traffic not
traveling on such paths could be dropped to ensure that the
PFC would not be triggered. The involved manual configura-
tion is also well-known to be error-prone [7], [8].

Rate limiting. Rate limiting is used to break the necessary
condition—hold and wait—for the deadlock [33]. Nonethe-
less, manipulating the rate at fine granularity requires good
control over the adjustment periods and queue variation, which
cannot always be guaranteed to be precise enough.

Summary. Existing deadlock avoidance approaches address
the problem to some extent, but they are not foolproof. Thus,
deadlock detection is an important and necessary fail-safe.

B. Existing Detection Solutions Fall Short

Existing deadlock detection solutions rely on a centralized
controller or switch local control planes [27], [35] to query
port states and detect deadlocks. The programmability of con-
trol planes also enable flexible rerouting or draining strategies
on switches for recovery. However, inherent delays between
data planes and control planes together with the software
delays of control plane applications make these solutions
unable to response to deadlocks fast enough.

In addition, existing solutions detect deadlocks by proac-
tively monitoring for blocked ports. Concretely, if the through-
put of a port is zero while the corresponding queue length is
non-zero, the port is regarded as a suspected port that can form
deadlocks. However, the overhead of proactive monitoring is

very high as it requires the periodic inspection of all ports of
all switches in a network. In a normal network, most of time,
the inspection will find nothing wrong.

Furthermore, current deadlock detection solutions are un-
able to eliminate the root cause of the detected deadlock.
Therefore, even if the deadlock can be broken and the traffic
flow can recover temporarily, none of them is able to prevent
the same deadlock from reappearing again.

C. New Opportunity for Deadlock Detection

For each shortcoming of existing solutions, we propose a
new alternative design strategy in ITSY.

Detecting deadlocks in the data plane. ITSY exploits
the trend that switch data plane hardware in data centers is
becoming increasingly programmable [5], [41]. Specifically,
programmable parsers and deparsers enable us to customize
packet headers. Metadata for deadlock detection can thus
be piggybacked onto pause frames. Second, the provided
stateful memory and ALUs make it possible to maintain state
information directly in the data plane. A deadlock detection
algorithm performed entirely in the data plane eliminates
the high overhead introduced by interacting with the switch
control plane. Finally, the data plane runs at line speed, which
allows quick reaction when a deadlock occurs.

Detecting deadlocks reactively. Rather than periodically
checking the status of switch ports, ITSY triggers the deadlock
detection process only when an initial pause event happens.
This has several advantages. First, the detecting process fol-
lows the direction of pause frame propagation, which greatly
reduces the network overhead and switch memory consump-
tion. Second, being triggered by the initial pause event, ITSY
can detect deadlocks almost immediately.

Preventing recurrence of the same deadlock. Simply
breaking the deadlock by adjusting a switch on the CBD
cycle might be insufficient, as a chain of similar pause events
could occur again and cause the same deadlock. Identifying the
switch that instigates the pause events leading to a deadlock,
termed the initial trigger, is therefore a crucial first step in
diagnosing the root cause of the deadlock (e.g. a malfunction-
ing NIC or switch port) so as to prevent a recurrence. ITSY
is designed to reveal the initial trigger to the network operator
to facilitate such diagnosis.

III. DEADLOCK DETECTION

ITSY leverages the programmable data plane to detect
deadlocks and identify initial trigger nodes. Detection pro-
cesses are based on different locations of the initial trigger
- on the loop or out of the loop, respectively. A port-based
data structure is used to keep track of causal relationships
between pause events generated at different switches. ITSY
attaches metadata for deadlock detection to pause frames or
synthesized packets. Once a deadlock is detected, the initial
trigger provides clues to mitigate potential pause events later
and hence prevent the same deadlock from recurring. ITSY’s
correctness is based on two guarantees—1) spatial: a chain of
pause events triggered hop by hop (causality-chain) forms a

Symbol Meaning

Stri Node ID of the initial trigger
Ptri Port ID of the initial trigger that sends pause frame
Sgen−ini Node ID of the generic initiator
Pgen−ini Port ID of the generic initiator that sends pause frame
Seqid Sequence number of checking message sent by Sgen−ini

Scur Switch ID of the current switch
ξp Set of causal ports sending traffic to port p at current switch
δp Set of ports that pause the upstream and be causal with port p
rp RESUME tag for port p of the current switch

TABLE I: Meaning of symbols used in this paper

loop (causality-loop) 2) temporal: all nodes on the causality-
loop are paused simultaneously, indicating a real deadlock
rather than just a CBD scenario. ITSY makes no assumptions
about the topologies and routing algorithms in use.

A. Identifying the Initial Trigger

The initial trigger, which can be a server or a switch, is
at the beginning position of the causality chain. A server
generating a pause frame is immediately identified as an initial
trigger since it is the destination of flows in the network. In
the case of a switch, when an ingress port generates a pause
frame due to the congestion at a corresponding egress port, it
checks whether the egress port is paused or not. The switch is
identified as an initial trigger if the egress port is not paused.

B. General Primitives for Deadlock Detection

Before discussing deadlock detection based on the location
of initial triggers, we present primitives for solving two basic
aspects of deadlock detection. Such primitives can be applied
to cover different scenarios, including the initial trigger on the
deadlock loop or out of the deadlock loop. The meanings of
the symbols used in the following are displayed in Table I.

Port-based causality data structure. The port-based
causality data structure maintains the causality relationship
between different switch ports, as shown in Figure 1. For a
switch with N ports, each port maintains a bit-map of size
N to track all the relevant ports that send traffic to its egress
queue, which we call a traffic mapping. Each bit indicates
whether there are active packets transmitting from a certain
ingress port to a certain egress port. In the above example,
the egress queue of port E4 is occupied by packets of flow
f1 from ingress port I1, setting the corresponding position
in the traffic mapping to 1. It will be cleared to 0 when no
active packet is in the egress queue. Similarly, for port E5,
the bits for I2 and I3 are set to 1. Each port also maintains
a bit that represents whether the corresponding port currently
pauses the upstream switch. In the example, port I2 and I3
have already sent pause frames, the corresponding values are
set to 1. When receiving a new pause frame, the switch would
query the traffic mapping as well as the port state to determine
the relevant ports for deadlock detection. As an example, if E5
receives a pause frame, the switch will traverse the bit-map
for E5 and the port states of all ports. Since I2 and I3 both
have causality with E5 and currently pause the upstream, the
metadata for deadlock detection is forwarded to I2 and I3.

Causality-loop primitive. The causality-loop can be deter-
mined when the causality chain of pause frames has visited the
same port of the same switch twice. The switch that suspects

TrafficMap InPort1 InPort2 InPort3 … InPortN
OutPort1 0 0 0 0
OutPort2 0 0 0 0
OutPort3 0 0 0 0
OutPort4 1 0 0 0
OutPort5 0 1 1 0

… 0 0 0 0
OutPortN 0 0 0 0

Forwarding
group for

Port 5

Port 5:
0110

E4

E5
I3

I2

I1

S

Unrelated
PF

f1

f3

f2

Pause
upstream

Received
PF

Pause
upstream

PauseUp 0 1 1 0

Fig. 1: Port-based causality data structure

a causality-loop and initiates detection is called the generic
initiator. Messages used for tracing the causality-chains are
called checking messages. The packet header of a checking
message is extended to record the unique ID {Sgen−ini,
Pgen−ini} of the generic initiator, as well as the Seqid sent
by the generic initiator. The Seqid represents a unique episode
of causality-loop detection. It is used to decompose different
causality-chains from the same generic initiator when resume
and pause frames alternate. The method works as follows.

1) The generic initiator sends a checking message with
its {Sgen−ini, Pgen−ini, Seqid} in the packet header.
The selection of the generic initiator and when checking
messages are sent are different for different use cases
based on the location of the initial trigger (details in
sections III-C and III-D).

2) When receiving a checking message, non-generic ini-
tiator switches parse and store the received {Sgen−ini,
Pgen−ini, Seqid} in the data plane at the receive port,
which are then used for generating the next checking
message. The Seqid is updated when receiving a newer
checking message (higher Seqid) from the generic initia-
tor. The stored generic initiator info at a port is removed
after receiving a resume frame.

3) When port p receives a checking message, non-generic
initiator switches query the port-based causality data
structure to obtain corresponding ports δp that currently
pause the upstream and have causality with port p. If
δp = ∅, the switch will drop the current checking message
and wait for the generation of the next checking message
(see next bullet). Otherwise, the switch will forward the
checking message to all ports in δp.

4) A non-generic initiator switch generates a new checking
message when a pause frame is triggered by congestion
on an egress port p. This new checking message will
carry the corresponding {Sgen−ini, Pgen−ini, Seqid}
stored at port p.

5) When a switch Scur receives a checking message from
port p whose Sgen−ini is Scur, Seqid is the latest, and
Pgen−ini belongs to ξp, the causality-chain has passed
the same port of the same switch again. A causality-loop
is determined and a deadlock is potentially formed.

Lemma 1: The causality-loop is detected when the re-
ceived checking message {Sgen−ini, Pgen−ini, Seqid} sat-
isfies Sgen−ini = Scur, Pgen−ini ∈ ξp where p is the
port receiving the checking message, and Seqid equals the
sequence number at Pgen−ini.

Proof: The checking message is propagated from a switch
Sgen−ini following the chain of pause events. When Scur =
Sgen−ini, the pause chain has returned to the generic initiator

and thus a loop is formed. The next step is to make sure that
the ports on the loop have correct causal relationships. The
causality of other ports on the loop, except p at Scur (e.g.
P1 in Figure 2), is guaranteed by the characteristics of PFC
pause frames due to rules 3 & 4 above. At Scur, if Pgen−ini
belongs in ξp (e.g. P2 ∈ ξP1 in Figure 2), a causal relationship
between p and Pgen−ini is confirmed; and as the sequence
number at Pgen−ini equals Seqid, a complete causality-loop
belonging to the same detection episode is confirmed. �

Temporal consistency primitive. The paused ports on a
detected causality-loop might be resumed during the process
of causality-loop detection. To detect a true deadlock, the
temporal consistency primitive checks if every port on the
causality-loop is continuously paused since the initial pause
event was triggered. Each episode is determined by the Seqid
of the generic initiator. Each port on a switch maintains a
RESUME tag rp representing whether the pause is resumed
during the current detection episode. It is set to zero in
each episode when the corresponding port is paused, and
updated to 1 when receiving a resume frame. Upon detecting
a causality-loop, the data plane of Sgen−ini generates a tem-
poral consistency check packet carrying {Sgen−ini, Pgen−ini,
Seqid} and sends it through Pgen−ini. When the packet is
received at port p of a switch, it is forwarded to ports that
belong to the causal ports ξp and have sent PFC pause frames
with the same {Sgen−ini, Pgen−ini}. Each switch port that
receives the temporal consistency check packet would check
the corresponding RESUME tag and the stored Seqid. A
deadlock is determined if all switches on the causality-loop
maintain false RESUME tags and the same Seqid as that
during causality-loop detection.

Lemma 2: The temporal consistency is satisfied if rp = 0 at
every switch port p along the causality-loop and the ports all
have the same sequence number as the Seqid in the temporal
consistency check packet.

Proof: 1) If rp = 1 at some switch: port p is resumed without
being paused again. At least one node on the causality-loop
is resumed and not paused at the same time as others. 2) If
rp = 0 but Seqid is not found at some switch, there must
be a new pause frame after a resume frame, which induces
a new independent episode of detection. rp = 1 followed by
rp = 0 cannot happen in the same episode. Even if rp = 0
holds for all switches on the loop, the temporal consistency
is unsatisfied as multiple episodes are involved. 3) If rp = 0
holds for all switches in the episode represented by the same
Seqid, no resume frame is transmitted during this episode.
All ports maintain a paused state in the entire episode and the
temporal consistency is confirmed. �

Theorem 1: A deadlock is determined by Sgen−ini on the
causality-loop, when Seqid cau = Seqid tem where Seqid cau
represents the episode when a causality-loop is detected and
Seqid tem represents the episode when temporal consistency
is confirmed.

Proof: Based on Lemma 1, the checking message with
Seqid cau spreads along the causality-loop and comes back
to the beginning position as Sgen−ini. Based on Lemma 2,

7/30/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

S1 S2

S6S5S4S3

H1 H2 H3 H4 H5 H6 H7 H8

Failure
Link

f1 f2f3 f4

S7 S8 S9 S10

Initial
Trigger

Deadlock CBD: S2 - > S4 - > S1 - > S5

 Pause Loop: S2 - > S5 - > S1 - > S4

H1

S1

S2

S5

S4

Pause
Frame

P1

P2

P3

Fig. 2: Example of deadlock in the Clos network topology
when initial trigger is on the loop

all nodes on the causality-loop are guaranteed to maintain a
paused state in the episode of Seqid tem. If these nodes also re-
main paused in the episode of Seqid cau, Seqid cau must equal
to Seqid tem, representing the same episode. Therefore, the
causality-loop is paused for the the whole detecting episode,
and thus a deadlock is determined. �

C. Initial Trigger on Loop

When the initial trigger switch is part of the deadlock
CBD loop, the deadlock can be detected from the loop itself.
Figure 2 shows an example of this case in the Clos network
topology. The principle for deadlock detection is identical to
the general primitives previously described in Section III-B.

Generic initiator selection. In this case, the initial trigger
node is regarded as the generic initiator since it is at the
beginning of the causality-chain and the causality-chain itself
forms the CBD cycle.

Checking message propagation. Whether it is the initial
trigger or non-initial trigger switch sending out a PFC pause
frame, the current checking message {Stri, Ptri, Seqid} is
piggybacked onto the PFC pause frames. When a non-initial
trigger switch detects that the next hop of the causality-
chain has already been paused, no new pause frame can be
generated. The checking message {Stri, Ptri, Seqid} is then
forwarded with a different priority. Notice that the checking
message is in the opposite direction of the deadlock loop, and
thus would not be blocked by the currently congested ports.
Based on the causality-loop primitive, if a deadlock exists, the
causality-loop must be detected by Stri.

Temporal consistency guarantee. The temporal consis-
tency primitive can take effect in this case by choosing
the initial trigger as the start of the temporal consistency
check. Deadlock is determined when the temporal consistency
primitive holds.

D. Initial Trigger out of Loop

Some practical deadlock scenarios are affected by pause
events sent from the initial trigger out of the deadlock loop.
As shown in Figure 3, a misbehaving server H8 as the initial
trigger node continually sends pause frames to the upstream,
leading to a deadlock between S2, S5, S1 and S4. An
indication of this case is that a middle switch receives multiple
pause frames with the same {Stri, Ptri} from different ports.
In Figure 3, this phenomenon is detected at S2 when it receives
two pause frames with the same {Stri, Ptri} from S6 and S4.

7/30/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

S1 S2

S6S5S4S3

H1 H2 H3 H4 H5 H6 H7 H8

f1 f2f3 f4

S7 S8 S9 S10

f5

Deadlock CBD: S2 - > S4 - > S1 - > S5
 Pause Propagation: H8 - > S10 - > S6
 - > S2 - > S5 - > S1 - > S4 - > S2

S6

S10

S1

S2

S5

S4

Misbehaving
server

Failure
Link

Initial
Trigger

Pause
Frame

P1

P2

P3

H8

Fig. 3: Example of deadlock when initial trigger is out of loop

Lemma 3: If deadlock exists and Stri is out of the causality-
loop, one switch (called the middle switch) must receive
at least two pause frames with the same {Stri, Ptri} from
different ports.

Proof: Once the causality-loop is formed and Stri is out
of the loop, there must be a switch at the junction between
the inside and outside of the loop, such as S2 in Figure 3.
This switch must have received pause frames from at least
two directions. One is from the outside downstream switch
(e.g., S2 P3 receives PF from S6), the other one is from the
switch on the causality-loop (e.g., S2 P1 receives PF from
S4). As both pause frames trace back to Stri, the received
{Stri, Ptri} from different ports must be the same. �

Generic initiator selection. The middle switch receiving
the same {Stri, Ptri} from different ports is selected as
the generic initiator to start a new process of causality-
loop detection. Although unlike the on-loop case where the
causality-loop is determined immediately upon being formed,
the out-of-loop case can start the causality-loop detection no
later than the formation of causality-loop.

Checking message propagation. As the middle switch is
selected as the generic initiator, the {Sgen−ini, Pgen−ini}
used for checking message in this case is the SwitchID and
PortID of the middle switch, which we called Smiddle and
Pmiddle. When the causality-loop detection is triggered, the
middle switch has received two potentially different Seqid
from two pause frames at different ports. The Seqid from
the second pause frame is used in the deadlock detection
checking message. The middle switch generates a packet to
carry the checking message {Smiddle, Pmiddle, Seqid}, which
is forwarded along the causality-chain.

Temporal consistency guarantee. Temporal consistency
primitive is invoked by choosing the middle switch as the
start of the temporal consistency check.

IV. DEADLOCK RESOLUTION

Upon detection of a deadlock, actions must be taken to
resolve the deadlock. However, none of the existing solutions
for deadlock resolution takes the data plane features into con-
sideration. Also, even though temporary rerouting is a common
method used for breaking a deadlock [27], it is not always
viable if not all flows have multiple paths or if flows have
routing policy restrictions. In addition, rerouting may create
new congestion and deadlocks on other parts of the network.
Therefore, the deadlock should be better resolved in the data
plane without requiring route changes in the control plane.

We present three deadlock resolution mechanisms that provide
different trade-offs between memory usage, data complexity,
and traffic modulation. All the mechanisms rely on detecting
the deadlock with the initial trigger as the first step, however,
they differ by the method of resolving the deadlock.

A. Count-min Based Drop

Although designed for lossless networks, protocols like
RoCEv2 could still tolerate a small packet loss rate, i.e.,
0.0001 [44]. Based on this property, a count-min based drop
mechanism is proposed to break the deadlock. Goal: Resolve
the deadlock with an acceptable drop rate while minimiz-
ing affected traffic. That is, the network becomes unblocked
with only a little buffered traffic being dropped, and the actual
performance impact is guaranteed to be tolerable.

Design 1: Identify the top-k largest flows for dropping
packets. Since network traffic usually follow the power-law
distribution [24], most packets that cause congestion and pause
events are likely from the largest flows. Therefore, the count-
min based drop mechanism starts to drop packets from the
top-k elephant flows (k is a tunable parameter). We keep
track of the top-k flows with a heap structure implemented
with a consolidated table proposed by Qian et al. [32]. As
shown in Figure 4b, each of the k table slots maintains a
flow ID, estimated flow size, and the indices of the parent and
children nodes in the heap. When a packet propagates through
the switch, only one memory access is needed to retrieve the
table slot for the root of the heap, which would be updated
if it is smaller than the current flow size. Also, the indices of
parent and children slots are updated only when necessary. As
a result, lookup and update are both fast. Network operators
can also provide their own preference, such as different k
values, special lossless requirements for specific flows/paths,
and different packet loss tolerance for different applications.

Design 2: Estimate the flow size and determine the
loss tolerance with count-min sketch. Both top-k flow
identification and loss rate calculation require the estimation of
flow size which could be achieved by a count-min sketch. As
shown in Figure 4, for each egress port, the switch maintains
a count-min sketch with m rows and e cells per row based
on the number of hash functions. For each packet, the switch
will compute a series of hash values for the flow ID (e.g., 5-
tuple) in order to update corresponding slots for that flow. Each
slot provides an approximate count which would be updated
when the sequence number of current packet is larger than
that. To query the size of a flow, the minimum value of all
mapping approximate counts would be returned. Notice that
regular count-min sketch can only support update action, and
the estimation accuracy decreases with the number of flows in-
serted. Also, only the active flows in the network is meaningful
for resolving deadlock. To solve these concerns, we provide
a reduction action that when detecting the completion of a
flow (e.g., a FIN flag in the TCP header), the estimated count
of such flow would be subtracted from the total traffic meter.
Based on such flow size estimation with count-min sketch, the
acceptable drop size could be obtained.

Index Port1 … PortN
Hash 1 Hash 2 … Hash e

1 cnt11 cnt12 … cnt1e

2 cnt21 cnt22 … cnt2e

3 cnt31
 cnt32
 … cnt3e

… … … … …
m cntm1 cntm2 … cntme

Packet
Seq number

Flow ID

Hash 1
Hash 2

…
Hash e

{

Port Estimated Count
1 min{cnt11, cnt32, cntme}

,}

{f_id, e_cnt, parent_index,

child_ left, child_right}

Update

(a) Count-min sketch for ITSY (b) Top-k table for ITSY

(Info in each table slot)

Fig. 4: Update and query the count-min sketch for resolution

Design 3: Drop packets gradually within the tolerable
packet loss rate. To break the deadlock, at least one packet
worth of traffic should be dropped. This mechanism gradually
drops more packets to guarantee the network could restore to a
normal state. When a drop occurs, the queue of the paused port
would be shortened and traffic begins to drain from the loop. If
the queue lengthens again during the resolution before falling
below the PFC threshold, twice the number of packets would
be dropped than in the previous round. Based on the number
of dropped packets and the estimated count from count-min
sketch, the mechanism would stay within the tolerable packet
loss rate requirement.

This mechanism is practical, no operation is needed for
new arriving traffic, and no additional network bandwidth is
consumed. However, it requires the network to accept certain
packet losses and the data structures incur some memory
overhead on the switch.

B. Port-level Resolution

Port-level resolution mechanism is proposed in case that
network operators have stringent requirements on the lossless
features. Goal: Resolve the deadlock without packet loss
while still not involving changes to the network routing.
It should provide feasible strategies to obtain extra available
buffer as well as avoid the interference of external traffic.

Design 1: Dynamic buffer allocation to absorb queuing
packets. This mechanism achieves dynamic adjustments to
the headroom buffer region which is originally shared by all
ports and used to absorb packets before pause frame takes
effect. Once a deadlock is detected, the switch that declared
the deadlock would shift extra buffer space from the headroom
region to the queue on the deadlock loop. The declared switch
could therefore un-pause the upstream switch and the traffic
on the deadlock loop could then make progress.

Design 2: Completely block external traffic that might
compete for the available buffer. Note that there could be
some external traffic being forwarded to the on-loop switch
port while not arriving from the port on the loop. Such traffic
could interfere with deadlock resolution by competing for
the buffer space against the traffic on the deadlock loop. To
avoid such interference, the port-level resolution mechanism
only resumes the traffic that arrives from the ports on the
causality loop. External traffic from out-of-loop ports are not
allowed to be transmitted until the queue decreases below the
PFC threshold. Take the scenario in Figure 2 as an example.
Flow f1 and f4 could resume transmission at the initial
trigger switch S2, while flow f2 would still be suspended.

Therefore, the traffic load of blocked ports on the causality
loop could decrease, thereby reducing the queue occupancy
and eliminating the deadlock.

Design 3: Determine the ports of external traffic in-
terfering with deadlock resolution. To determine the ports
that do not belong to the deadlock loop, corresponding port-
loop relationships should be obtained. During the temporary
consistency check, a list of switch ports on the causality loop
is recorded. During the deadlock resolution, the resume frame
is sent with the recorded port list. The upstream switch would
recognize the next causal port for resume and then remove
the corresponding field from the list. Therefore, the additional
overhead of the packet would be very trivial.

This mechanism breaks the deadlock by achieving external
traffic blocking at the port level without any loss of packets in
the network. Also, it requires less buffer space compared with
the existing buffer management for deadlock avoidance [40]
since it is independent of the flow path length and even a single
packet size adjustment is enough to break the deadlock.

C. Flow-level Resolution

Under port-level resolution, some of the blocked traffic from
out-of-loop ports may actually be forwarded to the out-of-loop
egress ports and would not interfere with the deadlock resolu-
tion. Therefore, flow-level resolution mechanism is proposed
as an extension to port-level resolution. Goal: Provide more
fine-grained flow control during deadlock resolution. Both
buffer adjustment and port-loop relationship determination of
this mechanism are the same as the port-level one, but flow-
level selective blocking for external traffic is added.

Design 1: Only block external flows that enter the loop.
This mechanism provides a flow-level pause/resume strategy,
coexisting with the current port-level PFC strategy. During
deadlock resolution, the ports that belong to the causality
loop would trigger the port-level resume frame as before. In
contrast, the out-of-loop causality ports would trigger the flow-
level resume frame, resuming the flows that do not enter the
loop. For new arriving traffic, the flow-level pause frame would
only pause the flows forwarded to the paused ports as well
as enter the deadlock loop. Once the queue of paused ports
on the causality loop decreases below the PFC threshold, the
deadlock resolution phase ends and a normal port-level resume
frame would be triggered.

Design 2: Resume and pause flows based on ECMP
group information. Rather than encoding every flow’s 5-
tuple in the flow-level PFC frames, we use ECMP group
information to represent a group of flows transmitted to the
paused outgoing ports on the loop. All traffic flows with the
same ECMP group information are not allow to be transmitted,
thus the messaging overhead could be significantly reduced.
For example, in Figure 5, the ECMP group g d1 at switch D is
meant to be forwarded to the paused port on the deadlock loop.
During deadlock resolution, the flow-level frame is sent with
a corresponding list of ECMP groups g d1, g e1, g g1. The
irrelevant traffic (e.g., pink one) with a different ECMP group
could be resumed while the interfering traffic (e.g., green one)

Fig. 5: Flow-level resolution based on ECMP groups

would remain in paused state. For new arriving flows, the
switch connected to the host would pre-calculate the ECMP
group for the next few hops and flows that belong to the known
interfering ECMP groups would be blocked. This mechanism
minimizes the impact on other traffic that do not interfere
with deadlock resolution. However, the transmission of the
messages carrying ECMP groups would somewhat increase
bandwidth consumption.

V. DISCUSSION

Initial trigger handling. In addition to breaking the dead-
lock, the recurrence of deadlock could be further prevented
by handling the initial trigger. If the initial trigger is a switch,
one crucial strategy is to identify the heavy hitters which
send a large amount of traffic and thus cause the congestion.
The count-min based drop mechanism can be used for heavy
hitter detection, and once identified, further steps from recent
proposals can be leveraged to limit the heavy hitters [39].

The initial trigger may also be a server when there is a
flow control issue or a malfunctioning NIC. Due to limited
memory resources in the NIC, a flow control issue may cause
thousands of PFC pause frames to be sent per second from
a server [16]. In addition, bugs in the receiving pipeline of
the NIC can cause the server to be unable to handle the
received packets and continually send pause frames [16], [44].
To handle such an initial trigger server, a micro-controller of
the NIC could prevent it from generating pause frames or the
connected switch would disable lossless mode since the NIC
is not functioning at all.

Concurrent deadlocks. Multiple concurrent deadlocks
might exist in the network. If they occur at completely differ-
ent positions without any shared parts on the loop, both dead-
lock detection and resolution are independent. Otherwise, if
they involve overlapping nodes or links, the deadlock detection
could still be distinguished with different causality loops and
episodes, while the deadlock resolution may need additional
operations. The count-min based drop mechanism could work
as normal, while the port-level and flow-level resolution could
experience unexpected interference, as different overlapping
deadlocks may conflict in their need to block external traffic.
To solve this issue, a priority operation could be added to
guarantee that the switch is not allowed to start a new deadlock
resolution until the current one is completed.

VI. EVALUATION

Setup. We have set up a simulation environment using the
BMv2 software switches in the NS3 simulator. The experi-
ments are performed in the CloudLab platform [13], each
node has eight-core 2.0GHz CPU and 32GB of RAM. We
have evaluated our system on the VL2 topology [14] and

a large fat-tree topology [2] while mainly focusing on a
region of 20 switches. Multiple deadlock scenarios are created
with different initial trigger locations, different deadlock loop
length, different involvement of edge, aggregation and core
switches and so forth.

Workloads. We simulate empirical workloads from produc-
tion networks for our evaluation. The flow size distribution is
taken from a data center network supporting web search [4]
with a diverse mix of small and large flows. 30% of the flows
are 1–30MB, so that multiple large flows can be concurrently
active from/to one switch port. The arrival time of different
flows is based on a Poisson process and flow arrival rate
is varied to obtain different load utilizations in the network.
The source and destination for traffic are chosen uniformly at
random and TCP transport is used. To guarantee the forma-
tion of deadlock, we inject several persistent non-congestion
controlled flows to create congestion.

A. Demonstration of ITSY

We first demonstrate that ITSY could response quickly to
the deadlock as well as successfully resolve the deadlock. The
detection and resolution behaviors are evaluated by deadlocks
created with two failed links which then lead to rerouting
and finally a deadlock loop. Although the resulting congestion
could spread to a large number of upstream switches, we
mainly measure the queue occupancy of switch ports on the
deadlock loop over time. Figure 6a displays the results of a
deadlock with 4 switches involved in the loop and we use the
one-hop link latency as the unit for time measurement since
link latency determines how fast ITSY messages propagate.
The queue occupancy increases first, then reaches the PFC
pause threshold. The pause frames would be propagated and
eventually form the deadlock at the time 16. The switch
declares the deadlock after 4 link latency time units (needed
for the temporal consistency check step). Then ITSY starts
to resolve the deadlock and the hold-and-wait situation could
be broken after 1 link latency. The queue occupancy would
continue to decrease, and the network would return to a
normal state. In all test cases, ITSY has no false positive
and no false negative. In cases without causality-loop, no
deadlock is declared by ITSY. In cases that a causality-loop is
formed but then one of the ports is immediately resumed, the
temporal consistency check could detect this situation without
mistakenly declaring any deadlock.

B. Comparison with Control Plane Based Solutions

Existing control plane based solutions. We compare ITSY
against two existing deadlock detection methods proposed
by Shpiner et al. [35]. Both methods are control-plane
based and need to proactively monitor all switch ports in the
network. The detection message is sent in the direction of
deadlocked traffic forwarding so that it requires the switches to
support enough traffic priorities. 1) Detection method 1 (M1):
Each deadlock-suspected ports periodically send the detection
packet with a randomized unique identifier. The next-hop
switch would compare the received identifier to the one sent

Detection

Breaking

Restore to
normalFormation of the deadlock

Resolution

(a) Queue occupancy with ITSY (b) Detection speed

(c) Bandwidth overhead

PathDumpCrafted BF INT Unroller ITSY0

100

200

300

400

500

600

700

800

Ad
di

tio
na

l O
ve

rh
ea

d
pe

r p
ac

ke
t (

bi
t)

(d) Per-packet overhead

Fig. 6: (a) Demonstration (b) (c) Compare with control plane
based methods (d) Compare with data plane based methods

by the switch. If the received identifier is smaller, the switch
would replace its original identifier with the received one in
the next sending period. A deadlock is declared when the
received identifier is equal to the one generated by the switch.
Each detection packet has only a one-hop lifetime and each
switch needs to send multiple rounds of packets in order to
successfully detect the deadlock. 2) Detection method 2 (M2):
Similar to the previous method, the detection packets are sent
through the deadlock-suspected ports periodically. However,
the full path information, including the unique identifiers, a
group of egress ports and a special index, would be maintained
in the packet header. The switch would check whether its own
information is found in the incoming packet to determine a
deadlock. As these packets store the path information, their
size grows linearly with the network diameter.

Detection speed. We first measure the detection speed
for different solutions to show how fast they could react
to the deadlock scenario. Figure 6b displays the normalized
detection time under different length of the deadlock loop,
with ITSY as the baseline. We ignore the software delays
of the control plane for processing the monitored packets in
M1 and M2; if such delays are counted, the actual detection
time would be somewhat higher. It could be observed that the
time required for detecting deadlocks with M1 and M2 is at
least 3.2× and 3.75× higher than that with ITSY, respectively.
The improvement of ITSY on detection speed becomes even
more obvious with increasing loop length. This is because
ITSY tightly follows the pause events propagation while the
other two relies on periodic inspection. Also, the two existing
methods would experience extra delays between the switches
and the centralized controller.

Additional bandwidth overhead. To compare the network
overhead between these solutions, we measure the amount of
extra bandwidth usage during detection under different number
of pause events per second, as shown in Figure 6c. Since

the checking message of ITSY is only sent when there is a
pause event, the overall network bandwidth consumption is
vanishingly small (less than 1 KB per second). In contrast,
the other two deadlock detection methods must continually
collect information from all switch ports in the network even
if no pause frame is generated.

C. Comparison with Data Plane Based Solutions

Existing data plane based solutions. We further compare
ITSY against state-of-the-art data plane based mechanisms
for detecting forwarding loop. Although these methods are
designed for forwarding loop detection and not for PFC
deadlock detection, we found that they are quite general and
could be applied to detect the causality-loop of deadlock, one
of the crucial steps in ITSY. 1) PathDump [37]: tracking
the paths and detecting routing loops with a special VLAN
tag. It requires certain restrictions on the network topology. 2)
Crafted BF [23]: a method that adds a probabilistic bloom
filter into packets to store switch information. 3) INT [15]:
each switch records their own ID in the incoming packet.
It detects the loop at the cost of significant packet header
space which grows linearly with the network diameter. 4)
Unroller [23]: encoding a varying fixed-size subset of the
traversed path based on the minimal identifier of switch to
detect the routing loop.

Per-packet overhead. We measure the overhead required
for each packet with the fat-tree topology involving 20 nodes,
as shown in Figure 6d. PathDump adds a fixed overhead
on each packet. The per-packet overhead of Crafted BF and
Unroller is the minimum value that can guarantee no false
positives. The overhead of INT is based on tracking a path
with 8 hops, it could be even larger with an increasing number
of traversed hops. In contrast, ITSY does not add information
in every data packet, it reactively detects the causality loop
and piggybacks information only on pause frames. Therefore,
there is no per-packet overhead for ITSY.

Number of hops required for detection. Among all the
above alternative approaches, Unroller is the latest and requires
much fewer bits than the others. Therefore, we further compare
ITSY against Unroller based on the number of hops needed
for detection in the worst cases. Assume L is the number
of switches in the loop and B is the number of hops before
the loop. For the on loop scenarios, ITSY relies on the
initial trigger, and the causality loop is detected within L
hops when the initial trigger has passed the same port of the
same switch twice. However, Unroller relies on the minimal
identifier encountered, and needs at most 2L−1 hops to detect
the loop: 1) the detection packet needs up to L − 1 hops to
reach the switch with the smallest identifier; 2) another L
hops is needed thereafter for the detection packet to reach
the smallest-identifier switch again and report the loop. For
the out-of-loop scenarios, ITSY needs L + B hops to find
the generic initiator, namely, the middle switch on the loop;
then it needs L more hops to detect the loop. In contrast, in
these out-of-loop scenarios, Unroller could fail to detect the
causality-loop with the single minimal identifier. To get around

(a) Switch memory overhead (b) Number of messages

(c) CDF of queueing delay

Fig. 7: Trade-off between proposed resolution mechanisms

this, Unroller has to gradually reset the identifier, which would
induce multiple extra passes over the loop. Consequently,
Unroller would require at most 4.67 ∗ (B + L) hops [23].

D. Trade-off between Three Proposed Resolution Mechanisms

We finally evaluate the three proposed resolution mecha-
nisms of ITSY and discuss the trade-off using different metrics
including switch resource overhead, network overhead and the
impact on other traffic. Network operators may choose the
preferred mechanisms according to their requirements.

Switch resource overhead. The switch resource usage of
three resolution mechanisms is evaluated under different num-
ber of flows per second, as shown in Figure 7a. The memory
overhead of port-level resolution and flow-level resolution
mainly comes from the port-based causality data structure. We
assume that ITSY could be deployed in a large-scale network
with 10, 000 64-port switches, so 14-bit SwitchID and 6-bit
PortID are required to support the uniqueness requirement.
The memory overhead of port-level mechanism is quite small
and is independent of the number of flows per second. The
flow-level mechanism needs to maintain the hash-based ECMP
group information as well as the paused flows. Therefore,
its memory overhead would increase with the number of
flows. The count-min based drop mechanism would require
additional memory for the count-min sketch and the heavy
hitter data structure. However, all these mechanisms could fit
comfortably in today’s programmable data planes that usually
have tens of MB of memory [6].

Data complexity. To analyze the data complexity of dif-
ferent proposed resolution mechanisms, we summarize the
number of messages sent during deadlock resolution based on
different message types, varying the number of flows per sec-
ond. As shown in Figure 7b, count-min based drop mechanism
only needs to resume the deadlock ports as normal resume
frame does, so that it incurs a very small number of messages.
Port-level resolution mechanism would send additional pause

(a) Not resolving initial trigger (b) Resolving initial trigger

Fig. 8: Benefits of resolving initial trigger out of the loop

frame to block the ports that contain traffic which may enter
the loop. The data complexity of these two mechanisms do
not increase with the number of flows. In contrast, flow-
level resolution mechanism requires dynamically sending the
resume and the pause frame in order to achieve more fine-
grained flow-level pause on external traffic, thus leading to
more messages transmitted in the network.

Impact on traffic. We evaluate the impact of different
resolution mechanisms on traffic based on the queuing delay,
which is normalized by the maximum queuing delay of a
single switch. As shown in Figure 7c, most packets under
count-min based drop experience a delay less than 50%; the
CDF does not reach 100 percent since delay is undefined for
dropped packets. Port-level resolution blocks all the traffic
from ports outside the causality loop, so packets may expe-
rience the maximum queuing delay but no loss. Flow-level
resolution affects a smaller number of packets since flows that
do not enter the causality loop are not blocked.

E. Benefits of Resolving the Initial Trigger
To demonstrate the benefits of resolving initial triggers,

we simulate a misbehaving server that continually pauses the
connected edge switch that leads to a deadlock. A baseline
solution is to break the deadlock without resolving the initial
trigger. We measure the normalized throughput at different
switch ports and results are shown in Figure 8. Although the
baseline can recover from the deadlock for a while, if the
traffic pattern does not change, the deadlock will reappear.
ITSY breaks the deadlock, identifies the initial trigger, which
can be removed to prevent the recurrence of the deadlock.

VII. CONCLUSION

In this paper, we propose ITSY to detect and resolve
deadlocks in PFC networks. We identify the initial trigger to
mitigate the recurrence of the same deadlock. The deadlock
scenarios are analyzed and detected based on the location of
the initial trigger. Upon detecting the deadlock, multiple dead-
lock resolution solutions are provided for network operators to
choose based on their requirements. ITSY can be implemented
entirely in the data plane, which achieves low overhead and
reacts quickly to deadlocks.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback. This
research is sponsored by the NSF under CNS-1718980, CNS-
1801884, and CNS-1815525.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation (OSDI 16), pages 265–283, 2016.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. ACM SIGCOMM computer communication,
38(4):63–74, 2008.

[3] Alibaba. Alibaba cloud - super computing cluster.
https://www.alibabacloud.com/product/scc.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In
ACM SIGCOMM, 2010.

[5] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
Snap: Stateful network-wide abstractions for packet processing. In
Proceedings of the 2016 ACM SIGCOMM, pages 29–43, 2016.

[6] Barefoot. Tofino: World’s fastest p4-programmable ethernet switch asics.
https://www.barefootnetworks.com/products/brief-tofino/.

[7] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 155–
168, 2017.

[8] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev. Con-
fig2spec: Mining network specifications from network configurations. In
Proceedings of 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’20), 2020.

[9] M. Budiu and C. Dodd. The p416 programming language. ACM SIGOPS
Operating Systems, 51(1):5–14, 2017.

[10] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren. Re-architecting con-
gestion management in lossless ethernet. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
19–36, 2020.

[11] J. Domke, T. Hoefler, and W. E. Nagel. Deadlock-free oblivious
routing for arbitrary topologies. In 2011 IEEE International Parallel
& Distributed Processing Symposium, pages 616–627. IEEE, 2011.

[12] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast
remote memory. In 11th {USENIX} Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414, 2014.

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra. The design and operation of cloudlab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1–14, 2019.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data
center network. Communications of the ACM, 54(3):95–104, 2011.

[15] P. A. W. Group. In-band network telemetry (int)
dataplane specification. https://github.com/p4lang/p4-
applications/blob/master/telemetry/specs/INT.mdk, 2018.

[16] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn.
Rdma over commodity ethernet at scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 202–215, 2016.

[17] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Aug-
menting data center networks with multi-gigabit wireless links. In
Proceedings of the ACM SIGCOMM 2011, pages 38–49, 2011.

[18] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen.
Deadlocks in datacenter networks: why do they form, and how to avoid
them. In Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, pages 92–98, 2016.

[19] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen.
Tagger: Practical pfc deadlock prevention in data center networks. In
Proceedings of the 13th International Conference on emerging Network-
ing EXperiments and Technologies, pages 451–463, 2017.

[20] IEEE. Ieee 802.1 qbb - priority-based flow control.
https://1.ieee802.org/dcb/802-1qbb/, 2010.

[21] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
ACM SIGCOMM Computer Communication, 44(4):539–550, 2014.

[22] S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman, T. Millstein,
Y. Tamir, and G. Varghese. Finding network misconfigurations by
automatic template inference. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 999–1013, 2020.

[23] J. Kučera, R. B. Basat, M. Kuka, G. Antichi, M. Yu, and M. Mitzen-
macher. Detecting routing loops in the data plane. In Proceedings of

the 16th International Conference on emerging Networking Experiments
and Technologies, pages 466–473, 2020.

[24] X. Li and C. Qian. Low-complexity multi-resource packet scheduling for
network function virtualization. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 1400–1408. IEEE, 2015.

[25] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, et al. Hpcc: high precision congestion
control. In Proceedings of the ACM Special Interest Group on Data
Communication, pages 44–58. 2019.

[26] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A fault-
tolerant engineered network. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), pages 399–412, 2013.

[27] P. Lopez, J. M. Martı́nez, and J. Duato. A very efficient distributed
deadlock detection mechanism for wormhole networks. In Proceedings
1998 Fourth International Symposium on High-Performance Computer
Architecture, pages 57–66. IEEE, 1998.

[28] C. Lou, P. Huang, and S. Smith. Understanding, detecting and localizing
partial failures in large system software. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
559–574, 2020.

[29] Microsoft. Availability of linux rdma on microsoft azure.
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available/.

[30] Microsoft. Cntk-the microsoft cognitive toolkit.
https://docs.microsoft.com/en-us/cognitive-toolkit/.

[31] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. Timely: Rtt-based
congestion control for the datacenter. ACM SIGCOMM Computer
Communication, 45(4):537–550, 2015.

[32] C. Qian, S. Shi, X. Shi, and M. Wang. Don’t work on individual data
plane algorithms. put them together! In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, pages 60–66, 2020.

[33] K. Qian, W. Cheng, T. Zhang, and F. Ren. Gentle flow control: avoiding
deadlock in lossless networks. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 75–89. 2019.

[34] J. C. Sancho, A. Robles, and J. Duato. An effective methodology to
improve the performance of the up*/down* routing algorithm. IEEE
Transactions on Parallel and Distributed Systems, 15(8):740–754, 2004.

[35] A. Shpiner, E. Zahavi, V. Zdornov, T. Anker, and M. Kadosh. Unlocking
credit loop deadlocks. In Proceedings of the 15th ACM Workshop on
Hot Topics in Networks, pages 85–91, 2016.

[36] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter.
Practical dcb for improved data center networks. In IEEE INFOCOM
2014-IEEE Conference on Computer Communications, pages 1824–
1832. IEEE, 2014.

[37] P. Tammana, R. Agarwal, and M. Lee. Simplifying datacenter network
debugging with pathdump. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 233–248, 2016.

[38] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang.
Netbouncer: active device and link failure localization in data center
networks. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 599–614, 2019.

[39] F. Tang, H. Zhang, L. T. Yang, and L. Chen. Elephant flow detection
and differentiated scheduling with efficient sampling and classification.
IEEE Transactions on Cloud Computing, 2019.

[40] K. D. Underwood and E. Borch. A unified algorithm for both ran-
domized deterministic and adaptive routing in torus networks. In 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pages 723–732. IEEE, 2011.

[41] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. Ports, and
A. Panda. Multitenancy for fast and programmable networks in the
cloud. In 12th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

[42] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and
M. Zhang. Netpilot: automating datacenter network failure mitigation.
In Proceedings of the ACM SIGCOMM 2012, pages 419–430, 2012.

[43] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury, Z. Liu,
and X. Jin. Programmable packet scheduling with a single queue. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 179–
193, 2021.

[44] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion control for large-
scale rdma deployments. ACM SIGCOMM Computer Communication,
45(4):523–536, 2015.

