
CUPCAKE: A COMPRESSION OPTIMIZER FOR SCALABLE
COMMUNICATION-EFFICIENT DISTRIBUTED TRAINING

Zhuang Wang 1 Xinyu Crystal Wu 1 Zhaozhuo Xu 1 T. S. Eugene Ng 1

ABSTRACT
Data-parallel distributed training (DDT) is the de facto way to accelerate deep learning on multiple GPUs. In DDT,
communication for gradient synchronization is the major efficiency bottleneck. Many gradient compression (GC)
algorithms have been proposed to address this communication bottleneck by reducing the amount of communicated
data. Unfortunately, it has been observed that GC only achieves moderate performance improvement in DDT, or
even harms the performance.

In this paper, we argue that the current way of deploying GC in a layer-wise fashion reduces communication
time but at the cost of non-negligible compression overheads. To address this problem, we propose Cupcake, a
compression optimizer to fully unleash GC algorithms’ advantages in accelerating DDT. It applies GC algorithms
in a fusion fashion and determines the provably optimal fusion strategy to maximize the training throughput
of compression-enabled DDT jobs. Experimental evaluations show that GC algorithms with Cupcake can
achieve up to 2.03× speedup in training throughput over training without GC, and up to 1.79× speedup over the
state-of-the-art approaches of applying GC to DDT in a layer-wise fashion.

1 INTRODUCTION

Deep Neural Networks (DNN) are gaining rapid popularity
in various domains, such as computer vision (He et al.,
2016; Szegedy et al., 2016; Simonyan & Zisserman, 2014)
and natural language processing (NLP) (Devlin et al., 2018;
Kiros et al., 2015; Manning et al., 2014). Because DNN
models introduce million-scale weight tensors, large batch
training over these giant tensors is infeasible due to the
limited GPU memory resources.

To overcome this obstacle, data-parallel distributed training
(DDT) has been widely adopted to accelerate the training of
DNN models. DDT uses multiple GPUs and each GPU has
a replica of the training model (Li et al., 2014). The training
dataset is partitioned into multiple parts and each GPU only
trains on its partition. DDT scales DNN training over a large
number of GPUs to reduce the total training time (Sergeev
& Del Balso, 2018; ByteDance, 2020; Li et al., 2020).

However, there exists an exacerbating tension between com-
putation and communication in DDT. The computation time
of DNN training has been dramatically reduced thanks to
the recent advancements in GPU architectures (Luo et al.,

1Computer Science Department, Rice University, Hous-
ton, TX, USA. Correspondence to: T. S. Eugene Ng <euge-
neng@cs.rice.edu>.

Proceedings of the 6 th MLSys Conference, Miami, Florida, USA,
2023. Copyright 2023 by the author(s).

2018; NVIDIA, 2021) and domain-specific compiler tech-
niques (Chen et al., 2018; Zheng et al., 2020). This trend
leads to more frequent gradient synchronization in DDT
and puts higher pressure on the network connecting GPUs.
However, it is difficult for the cloud network bandwidth
to keep up with the pace of computation-related improve-
ment. Moreover, the number of GPUs for DNN training
keeps increasing due to the ever-growing training dataset,
which further worsens the communication time (Jiang et al.,
2020). Communication has become a well-known efficiency
bottleneck in DDT as each GPU needs to transmit the full
gradients for synchronization (Fei et al., 2021; Huang et al.,
2019; Aji & Heafield, 2017; Lin et al., 2017).

Gradient compression (GC) is a promising approach to alle-
viate the communication bottleneck in DDT by significantly
reducing the amount of communicated data. A plethora
of GC algorithms (Strom, 2015; Lin et al., 2017; Tsuzuku
et al., 2018; Alistarh et al., 2017; Seide et al., 2014; Aji &
Heafield, 2017; Wen et al., 2017; Karimireddy et al., 2019)
have been proposed recently and they can save up to 99.9%
of the gradient exchange while preserving the training ac-
curacy and convergence (Wu et al., 2018; Stich et al., 2018;
Jiang & Agrawal, 2018; Wang et al., 2022).

However, it is challenging to achieve the desired speedup
when applying GC to DDT jobs (Bai et al., 2021; Agarwal
et al., 2022). In this paper, we first analyze the practical
difficulty of compression-enabled DDT jobs. The state-of-

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

the-art approach for applying GC to DDT is in a layer-wise
fashion, i.e., tensors are compressed one by one when they
are ready for communication. It can greatly shorten the
communication time for gradient synchronization because
of the reduced amount of traffic volume. However, we
surprisingly observed that the end-to-end training speedups
of DDT with the layer-wise compression are only modest,
and even worse than training without GC in many cases
due to the incurred prohibitive overhead of compression
operations (Xu et al., 2020; Wang et al., 2022).

We then propose Cupcake to maximize the training
throughput of compression-enabled DDT by reducing the
amount of communicated data and minimizing the com-
pression overhead simultaneously. Cupcake is a general
compression optimizer to enable GC algorithms to unleash
their benefits to accelerate DDT. Essentially, GC reduces the
communication time of DDT at the cost of the compression
overheads. Because of the fixed overheads to launch and
execute kernels in CUDA (Arafa et al., 2019), the compres-
sion overhead is non-negligible even for a small tensor size.
Fortunately, we observe that this overhead keeps constant
when the tensor size is smaller than a threshold (e.g., 4 MB
in our testbed) and it then linearly increases with the tensor
size. This observation motivates us to fuse multiple tensors
for one compression operation.

Fusing tensors for compression leads to a trade-off between
the reduced compression overhead and the communication
overhead, i.e., the communication time that cannot over-
lap with computation. Because communication overlaps
with computation in DDT (Zhang et al., 2017; Sergeev &
Del Balso, 2018; ByteDance, 2020; Li et al., 2020), gradi-
ent tensors can begin their communications whenever they
are ready in the layer-wise fashion. However, in a fusion
fashion, a tensor has to wait for its following tensors for a
unified compression operation and communication opera-
tion. Therefore, fusion can delay communications, shrink
the overlapping time, and thus worsen the iteration time.
To address this challenge, Cupcake determines the prov-
ably optimal fusion strategy for applying GC to DDT by
balancing the compression overhead and the communica-
tion overhead. It can maximize the training throughput
of compression-enabled DDT jobs, regardless of different
training models, GC algorithms, and training system con-
figurations, such as the number of GPUs and network band-
width.

Our evaluations in both computer vision and NLP demon-
strate that GC algorithms applied with Cupcake can
greatly improve the training throughput of DDT. Specif-
ically, Cupcake enables GC algorithms to achieve up to
2.03× speedup in training throughput over training without
GC, and up to 1.79× speedup over the state-of-the-start
solutions that compress tensors in a layer-wise fashion.

2 BACKGROUND

2.1 Data-parallel Distributed Training

Data-intensive training of DNNs on powerful Graphic Pro-
cessing Units (GPU) (Owens et al., 2008) boosts the suc-
cess of deep learning (LeCun et al., 2015). Given the mas-
sive amount of training dataset, data-parallel distributed
training (DDT) (Shallue et al., 2019; Ben-Nun & Hoefler,
2019; Li et al., 2020) has become one of the most popular
paradigms to scale out deep learning with multiple GPUs.
In this paradigm, the training dataset is partitioned into mul-
tiple subsets. Each GPU has a replica of the training model
that trains on a specific subset. In each iteration, each GPU
consumes a mini-batch from its allocated subset as the input
of the training. Next, it propagates the mini-batch through
the neural network model and calculates the loss function
via forward propagation. Then, it uses the loss value to com-
pute the gradients of each parameter in backpropagation.
Finally, it synchronizes the gradient updates from all GPUs
to update the model parameters with a certain optimizer,
such as SGD (Zinkevich et al., 2010) or Adam (Kingma &
Ba, 2014). Training a DNN model is a process to refine the
model parameters with the above steps iteratively until its
convergence. Asynchronous DDT, where GPUs do not wait
for the synchronized results to begin the next iteration, can
hurt the model accuracy (Chen et al., 2016). In this paper,
we focus on synchronous DDT because of its wide adop-
tion (ten, 2016; ByteDance, 2020; Sergeev & Del Balso,
2018; Li et al., 2020).

2.2 Communication Bottleneck in DDT

The single-GPU iteration time of DNN training jobs has
been significantly reduced thanks to the advancement of
DNN accelerators and domain-specific compiler techniques.
For example, the iteration time of ResNet50 with one GPU
has decreased by 22× in the last six years (Sun et al., 2019).
However, network upgrades have not kept up with the pace
of computation-related advancements. The cloud network
bandwidth has only witnessed a roughly 10× increase in the
same period (Mellanox, 2022). This imbalance between the
fast-growing computing capability and the slower-growing
communication bandwidth worsens the communication-
computation tense in DDT (Wang et al., 2023).

Single precision (FP32) is a common floating point format
representing the weights and gradients in deep learning.
When gradients are communicated in FP32 for synchroniza-
tion, it can lead to costly communication time and thus poor
scalability in DDT. It has been reported that the communi-
cation time for gradient synchronization accounts for over
60% of the total time for the training of BERT (Devlin et al.,
2018) or other Transformer models across 16 AWS EC2
instances, each with 8 NVIDIA V100 GPUs, in a 100Gbps
network (Bai et al., 2021; Wang et al., 2023).

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

Figure 1. An example of DDT with five tensors for gradient synchronization. (a) is the strawman in which communications have to wait
for the completion of backpropagation. (b) uses WFBP to overlap communication with backpropagation to reduce the iteration time. In
(c), every tensor is compressed, but it does not reduce the iteration time compared to (b) due to the compression overheads. Forward
propagation and decoding are omitted.

When the network bandwidth in GPU clouds cannot keep
pace with the improvements in computation, an alternative
is to shrink the communicated data volume by applying
gradient compression to DDT.

2.3 Gradient Compression Algorithms

Many gradient compression (GC) algorithms have been
proposed recently to reduce the amount of communicated
data volume for gradient synchronization. There are two
main types of GC algorithms: Sparsification and Quantiza-
tion. Sparsification selects a subset of the original stochastic
gradients for synchronization (Wang et al., 2022; Aji &
Heafield, 2017; Lin et al., 2017) and it can save up to 99.9%
of the gradient exchange (Lin et al., 2017). Quantization
decreases the precision of gradients. The gradients in FP32
are mapped to fewer bits, such as 8 bits (Dettmers, 2015),
2 bits (Wen et al., 2017), and even 1 bit (Seide et al., 2014;
Karimireddy et al., 2019; Bernstein et al., 2018) to reduce
the communicated traffic volume by up to 96.9%. Such com-
pression algorithms have been theoretically proved and/or
empirically validated to preserve the convergence of model
training and impose negligible impact on model accuracy
when combined with error-feedback mechanisms (Seide
et al., 2014; Wu et al., 2018; Stich et al., 2018; Lin et al.,
2017; Jiang & Agrawal, 2018). There are also other types
of GC algorithms, such as low-rank decomposition (Vogels
et al., 2019; Wang et al., 2018a) and FFT-based compres-
sion (Wang et al., 2020).

2.4 Overlapping Communication with Computation

Because of the layered structure and a layer-by-layer com-
putation pattern in DNN models, the wait-free backpropa-
gation mechanism (WFBP) (Zhang et al., 2017; Sergeev &
Del Balso, 2018; ByteDance, 2020; Li et al., 2020; Chen
et al., 2015) is widely adopted to overlap communication

with computation in DDT. As illustrated in Figures 1(a)
and 1(b), WFBP can significantly reduce the iteration time
compared to the strawman solution, in which communi-
cation cannot begin until the completion of backpropaga-
tion. Existing distributed ML frameworks, such as Py-
Torch (Paszke et al., 2019), Tensorflow (ten, 2016), and
Horovod (Sergeev & Del Balso, 2018), apply GC to DDT
in a layer-wise fashion, i.e., tensor by tensor, to overlap
communication with computation because of WFBP.

3 THE PRACTICAL PERFORMANCE OF GC
WITH LAYER-WISE COMPRESSION

Because applying GC to DDT requires computation re-
sources, it competes for GPU resources with backpropaga-
tion and delays tensor computation, as shown in Figure 1(c).
Although GC algorithms can reduce the communication
time of DDT, the incurred compression overheads can dra-
matically dilute the benefits gained from the reduced com-
munication time.

To demonstrate, we empirically measure the training speeds
of compression-enabled DDT with several popular GC al-
gorithms, including both sparsification and quantization.
The experiments are conducted on a server equipped with 8
GPUs (NVIDIA Tesla V100 with 32 GB memory), two 20-
core/40-thread processors (Intel Xeon Gold 6230 2.1GHz),
and PCIe 3.0×16. We use GRACE (Xu et al., 2020) as
the framework to support compression-enabled DDT and
GC algorithms are applied in a layer-wise fashion. The
training model is ResNet50 (He et al., 2016) over CI-
FAR10 (Krizhevsky et al., 2009) and the batch size is 32.

Two sparsification algorithms, DGC (Lin et al., 2017) and
Rand-k (Stich et al., 2018), are evaluated and the gradient
sparsity is 99%, i.e., only 1% of gradients are exchanged
during synchronization. Two 1-bit quantization algorithms,

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

FP32 Rand-k DGC EFSignSGD OneBit0

50

100

150

200
Ti

m
e

[m
s]

Computation
Compression
Communication overhead

(a) Time breakdown of one iteration (b) Encoding overhead (c) Decoding overhead

Figure 2. The compression overheads with different compression algorithms. The data in (a) are collected from the training of ResNet50;
the data in (b) and (c) are collected from a microbenchmark. Both encoding and decoding overheads are non-negligible.

EFSignSGD (Karimireddy et al., 2019) and OneBit (Seide
et al., 2014) are also evaluated.

Figure 2a shows the breakdown of the iteration time of the
training. The communication overhead refers to the commu-
nication time that cannot overlap with backpropagation and
compression of any tensors. FP32 is the training baseline
without GC. We observe that the performance improvement
with these GC algorithms is modest. Some algorithms, such
as DGC, EFSignSGD, and OneBit, even surprisingly lead to
a longer iteration time. This observation is on par with the
findings in prior works (Xu et al., 2020; Sapio et al., 2019;
Li et al., 2018; Gupta et al., 2020; Agarwal et al., 2022).

3.1 The Root Cause of the Poor Performance

When a gradient tensor is ready for synchronization in DDT
without compression, it is communicated and then the aggre-
gated results are used to update the training model. However,
there are two additional operations when applying GC to
DDT: encoding (encode a tensor before communication
to reduce the traffic volume) and decoding (decode the re-
ceived compressed tensor for model updates) 1 These two
operations can incur non-negligible computation overhead.

Figure 2b and 2c display the encoding and decoding laten-
cies with four representative GC algorithms, i.e., DGC (Lin
et al., 2017) and Rand-k (Stich et al., 2018) for sparsification,
EFSignSGD (Karimireddy et al., 2019) and Onebit (Seide
et al., 2014) for quantization. Both encoding and decoding
latencies are non-negligible, even for tensors with small
sizes. For instance, the encoding latencies of DGC, EF-
SignSGD, and Onebit are all greater than 0.25 ms, regard-
less of the tensor sizes.

DNN models typically have a large number of tensors for
gradient synchronization (He et al., 2016; Devlin et al.,
2018). The layer-wise compression invokes encoding and
decoding operations for each tensor and leads to prohibitive
compression overheads. We take training ResNet50 over

1It may require more decoding operations after communication
when multiple encoded tensors are received on each GPU.

Figure 3. Cupcake fuses multiple tensors for one compression
operation and one communication operation to minimize the it-
eration time. It is challenging to find the optimal fusion strategy
given a DDT job and a GC algorithm because fusing tensors leads
to a trade-off between the reduced compression overhead and the
overlapping time between communication and backpropagation.

CIFAR10 with 8 GPUs in our testbed as a concrete exam-
ple to compare the overall compression overhead against
the communication improvement. In our measurement, the
iteration time of the single-GPU training is around 48 ms.
Without any compression, the communication overhead in
each iteration is about 56 ms. Both sparsification and 1-
bit quantization algorithms can reduce the communication
overhead to less than 10 ms thanks to the much smaller
communicated traffic volume. However, the overall com-
pression overheads of DGC and EFSignSGD are both larger
than 60 ms, which is even higher than the communication
overhead in the baseline. The costly compression overheads
result in the poor practical performance of DDT with GC.

3.2 An Opportunity and a Challenge

The compression overhead of GC algorithms with a layer-
wise fashion becomes the new efficiency bottleneck in DDT.
We observe that there are some fixed overheads to launch
and execute kernels in CUDA (Arafa et al., 2019). Figure 2
shows that the encoding and decoding latencies of GC al-

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

gorithms keep constant when the tensor size is smaller than
a threshold (e.g., 4 MB in our testbed). They then almost
linearly increase with the tensor sizes. This observation
indicates that fusing multiple tensors for one compression
operation can potentially reduce the overall compression
overhead and thus the iteration time. Suppose there are ten
tensors with a size of 128 KB for gradient synchronization
and the encoding latency of DGC for a 128 KB tensor is 0.4
ms. If we can fuse these ten tensors for one encoding oper-
ation, the overall encoding latency is still 0.4 ms, which is
significantly lower than the latency incurred by ten encoding
operations for the ten tensors separately.

However, fusing tensors for GC algorithms raises a new
challenge: what is the optimal fusion strategy to minimize
the iteration time? There is a trade-off between the com-
pression overhead and the communication overhead because
fusing tensors to reduce the compression overhead has to
delay communications and thus shrink the overlapping time
between communication and computation (including both
backpropagation and compression). For example, an ex-
treme case of tensor fusion is applying a GC algorithm to an
entire training model with only one compression operation.
However, in this case, communication cannot begin until
the completion of backpropagation, resulting in suboptimal
communication overhead, as shown in Figure 3(a). Another
extreme case is to apply the layer-wise fashion to compress
tensors one by one to minimize the communication over-
head, but it leads to prohibitive compression overheads, as
discussed in Section 3.1.

There are numerous fusion strategies to apply a GC algo-
rithm to a DDT job and three strategies are illustrated in
Figure 3. It is challenging to find the optimal one because it
depends on many factors, such as the applied GC algorithms,
the tensor size and the computation time of the DNN model,
the number of GPUs, and network bandwidth. We must
jointly consider backpropagation, compression, and com-
munication overheads to search for the optimal strategy to
maximize the training throughput of compression-enabled
DDT jobs.

4 CUPCAKE

In this section, we first formulate the tensor fusion problem
given a DDT job and a GC algorithm. We then design an
algorithm to provably find the optimal fusion strategy to
minimize the iteration time.

4.1 Problem Formulation

The core idea of Cupcake is to fuse multiple tensors for
one compression operation, instead of applying GC to DDT
in a layer-wise fashion. It can reduce the compression over-
head and meanwhile overlap communication with computa-

tion to reduce the communication overhead.

Given a training model with N tensors, the set of tensors
is T = {T0, . . . , TN−1}. For example, Figure 1 and Fig-
ure 3 display a training model with five tenors. Cupcake
partitions the model into y groups and determines a fusion
strategy Xy = {x0, . . . , xy−1}, where xi is a group of con-
secutive tensors that are compressed and communicated
together. Cupcake performs an encoding operation and a
communication operation for each tensor group in each iter-
ation. After encoding, the fused tensor xi is communicated
and synchronized. After communication, the encoded xi is
decoded and aggregated to update the training model.

Let A denote the computation time for forward propagation
in an iteration and B(Ti) denote the computation time of Ti

in backpropagation. xi is the total tensor size of xi. h(xi)
is the time to compress xi and g(xi) is the corresponding
communication time. P (Xy) is the total overlapping time,
i.e., the total communication time that overlaps with the
compression and backpropagation of any tensors. Given a
fusion strategy Xy = {x0, . . . , xy−1}, the iteration time is

f(Xy) = A+

N−1∑
b=0

B(Ti)+

y−1∑
i=0

h(xi)+

y−1∑
i=0

g(xi)−P (Xy). (1)

A and B(Ti) can be profiled offline for a training model
and they are constant across iterations (Zhang et al., 2020;
Sun et al., 2019). Following the literature (Thakur et al.,
2005; NCC, 2021; Fei et al., 2021; Renggli et al., 2019), we
model the communication time of xi as g(xi) = αg + βgxi,
where αg is the latency (or startup time) per tensor and
βg is the transfer time per byte after encoding. Based on
the measurement in Figure 2, we model the compression
time of xi as h(xi) = αh + βhxi, where αh is the fixed
overhead to launch and execute kernels in CUDA and βg is
the compression time per byte. Cupcake measures αg , βg ,
αh, and βh offline based on the system configurations, such
as the GPU computation capacity, the number of GPUs, and
the network bandwidth.

Given a fusion strategy, Cupcake can calculate its itera-
tion time by deriving the timelines of its backpropagation,
compression, and communication (Wang et al., 2023), as
shown in Figure 3. Unfortunately, it is still challenging to
formulate f(Xy) due to P (Xy), which is determined by the
strategy and the intricate interactions among backpropaga-
tion, compression, and communications of all the tensors.

Instead of deriving the expression of P (Xy), we formulate
the tensor fusion problem in a recursive way to minimize the
iteration time of a DDT job with a given GC algorithm. Let
F (M, i) be the iteration time of the optimal fusion strategy
from Ti to TN−1, given the fusion strategy for tensors from
T0 to Ti−1 is represented by M . We then have the following
recurrence relation

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

(a) Cupcake prunes a strategy if its optimistic outcome is greater
than the current optimal iteration time when determining x0.

(b) Cupcake prunes strategies in which x1 fuses tensors from Ti to
Tj , where j < j∗, when x0 is determined.

Figure 4. Examples of the two pruning techniques.

F ({}, 0) = min

1≤i≤N
F ({fuse(0, i− 1)}, i), (2)

F (M, i) = min
i+1≤j≤N

F (M + fuse(i, j − 1), j), (3)

where fuse(i, j) fuses tensors from Ti to Tj as one group.
Cupcake first considers the form of x0, i.e., fuse(0, i− 1),
where 1 ≤ i ≤ N , in Equation (2). It then recursively
computes F (M, i) to find the optimal fusion strategy for
the entire model. For simplicity, let h(i, j) denote the com-
pression time of a fused tensor from Ti to Tj , g(i, j) denote
its communication time, and B(i, j) denote its backpropa-
gation time.

4.2 The Optimal Fusion Strategy

For any tensor in a DNN model except T0, it can be either
fused into the current group or form a new one. Therefore,
there are 2N−1 possible fusion strategies. It indicates that
the time complexity to address the tensor fusion problem
with brute force is exponential. Because DNN models typi-
cally have hundreds of tensors, it is impractical to enumerate
all possible strategies. Moreover, the optimal strategy is
specific to each situation because different DDT jobs have
different characteristics, such as different tensor numbers,
different tensor sizes, and different system configurations.

We first introduce two pruning techniques based on two
insights to enable Cupcake to find the optimal fusion strat-
egy efficiently.

Insight #1: It is not necessary for Cupcake to examine
all the N cases for the formation of x0. When there are too
many tensors in x0, it can delay communication and lead to
a long iteration time. Given a case of x0, we can calculate
the optimistic outcome of the iteration time as follows.

F ({fuse(0, i− 1)}, i) ≥
max{B(0, N − 1) + h(0, i− 1) + h(i,N − 1),

B(0, i− 1) + h(0, i− 1) + g(0, i− 1) + g(i,N − 1)}.
(4)

The optimistic outcome considers two cases. The first case

is that there is no communication overhead. The second case
is that except tensors in x0, all the other tensors are fused
as one group for compression and communication, and x1’s
communication begins right after x0’s communication, as
shown in Figure 4a. The compression time of x1 is perfectly
overlapped with communication. If the optimistic outcome
of a case is already greater than the iteration time of the best
fusion strategy found so far, then this case, i.e., the recursive
computation for F ({fuse(0, i− 1)}, i), can be pruned.

Insight #2: It is safe to fuse more tensors in a group
based on the progress of communication of the previous
group. Suppose x0 is fused from T0 to Ti−1. We apply
Equation (3) recursively to enumerate cases for x1, which
fuses tensors from Ti to Tj . The backpropagation time and
the compression time of x1 can overlap with x0’s commu-
nication, as shown in Figure 4b. The smallest j can be
calculated with

j∗ = argmax
j
{B(i, j) + h(i, j) ≤ g(0, i− 1)}. (5)

Note that the less number of tensors in x1 means more
tensors in x2 and DDT has to communicate more tensors
after the completion of backpropagation. Fusing from Ti to
Tj , where j < j∗, is no better than fusing from Ti to Tj∗

because it shrinks the overlapping time between communi-
cation and computation. Therefore, Cupcake can prune
the strategies in which x1 fuses tensors from Ti to Tj where
j < j∗ and only examine j ≥ j∗.

Fusion Algorithm. Based on the two insights of examining
possible fusion strategies, we design Algorithm 1 to find
the optimal fusion strategy given a DDT job and a GC
algorithm. The function Main() checks the N cases of x0
and it invokes FindOptFusion() to recursively search
for the optimal strategy (lines 1-5). FindOptFusion()
takes two inputs M and k: M = {x0, . . . , xa−1}, which is
the fusion strategy for tensors from T0 to Tk−1, and Tk is
the first tensor to be fused for xa.

Algorithm 1 uses global opt fuse to store the best fusion
strategy found so far and local opt fuse to store the local
best strategy from Tk to TN−1. Given M , it first applies

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

Figure 5. A general case for the two pruning techniques given M , which is the set of fused tensors from T0 to Tk−1. M.comp and
M.delay can be derived based on the timelines of backpropagation, compression, and communication of tensors in M .

the second insight to fuse the first group beginning from
Tk (Lines 9-16). The example illustrated in Figure 4b only
considers the case that xa−1’s communication begins right
after its compression, but it is likely that its communication
can be delayed by communication of its previous group.
The algorithm replaces g(0, i − 1) in Expression (5) with
M.delay, which denotes the difference between the comple-
tion time of compression and communication of xa−1. The
two cases of M.delay are illustrated in Figure 5. We also
denote M.comp as the time duration from the beginning
of backpropagation to the completion of xa−1’s compres-
sion, as shown in Figure 5. Given M , both M.delay and
M.comp can be calculated based on the timelines of back-
propagation, compression, and communication, regardless
of the strategy to fuse the remaining tensors.

Algorithm 1 finds j∗ based on M.delay (Lines 9-16) to skip
the enumerations of tensors from Tk to Tj∗−1. It then uses
the first insight to calculate the optimistic outcome (Lines
19-21). Similarly, the example shown in Figure 4a only
considers the case that xa’s communication begins right
after its compression. However, it is also likely that its
communication can be delayed by xa−1’s communication,
as shown in Communication case 2 in Figure 5. The al-
gorithm considers both cases and calculates the optimistic
outcome. Algorithm 1 prunes the search if the optimistic
outcome is already greater than the iteration time of the
current best strategy. Suppose xa is fused from Tk to Ti,
FindOptFusion() recursively applies itself to find the
local optimal fusion strategy from Ti+1 to TN−1 (Lines 25-
28). It updates local opt fuse and global opt fuse if the
current strategy is better (Lines 29-36).

In practice, Algorithm 1 can use a heuristic to bootstrap
global opt fuse with a relatively good fusion strategy. For
example, it can partition a DNN model into multiple groups
(e.g., two groups) with the same number of tensors.

Time complexity. The complexity of Algorithm 1 is O(2N)

because it has to enumerate all fusion strategies in the worst
case. Fortunately, the two pruning techniques can prune
most of them and enable Cupcake to find the optimal one
quickly, as we will show in Section 5.3.
Theorem 1. Algorithm 1 finds the optimal fusion strategy
that minimizes the iteration time of a DDT job given a GC
algorithm.

Proof. Algorithm 1 recursively invokes function
FindOptFusion(M,k). Let n = N − k, which
is the number of tensors this function considers. We use
induction on n to prove that the function finds the optimal
fusion strategy from Tk to TN−1 given M .

Base case. When n = 1, the function only needs to examine
one tensor and thus only one fusion strategy, which is the
optimal one.

Inductive step. Assume that for any 1 ≤ n ≤ p,
FindOptFusion(M,k) returns the optimal fusion strat-
egy from Tk to TN−1 given M . Consider n = p + 1.
Algorithm 1 divides the problem into p + 1 cases, where
case i (0 ≤ i ≤ p) fuses the first group from Tk to Tk+i.

We first consider case i where 0 ≤ i ≤ p− 1. The function
invokes FindOptFusion(M+fuse(k, k+i), k+i+1),
in which the number of tensors considered is p − i ≤ p.
Hence, it outputs the optimal strategy for case i based on
the assumption. We then consider case i = p and the first
group is fused from Tk to TN−1. This is the only fusion
strategy and thus the optimal one. Because these cases are
exclusive and cover the entire search space, Algorithm 1
finds the optimal fusion strategy for n = p+1 by searching
for the optimal one from these cases.

Algorithm 1 applies two pruning techniques to quickly find
the optimal fusion strategy. The first one prunes the cases
whose lower bounds are no better than the optimal found so
far and it has no impact on the optimality. The second one
prunes the cases whose first groups are fused from Tk to Tj ,

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

Algorithm 1: Optimal Fusion Strategy
Input: N is the number of tensors in a DNN model.

global opt fuse = {}. global opt time =∞
Output: The optimal fusion strategy global opt fuse.

1 Function Main():
2 for k ← 1 to N do
3 FindOptFusion({fuse(0, k-1)}, k)
4 end
5 return global opt fuse
6 Function FindOptFusion(M, k):
7 local opt fuse← {fuse(k,N − 1)}

// f() is defined in Equation (1)
8 local opt time← f(M + fuse(k,N − 1))
9 j∗ ← k

10 for i← k to N − 1 do
11 if B(k, i) + h(k, i) ≤M.delay then
12 j∗ ← i
13 else
14 break
15 end
16 end
17 M.comp = B(0, k − 1) +

∑
x∈M

h(x)

18 for i← j∗ to N − 1 do
19 base← B(k,N − 1) + h(k, i) + h(i+ 1, N − 1)
20 cases← max{B(k, i) + h(k, i),M.delay}+

g(k, i) + g(i+ 1, N − 1)
21 optim outcome←M.comp+max(base, cases)
22 if optim outcome > global opt time then
23 continue
24 end
25 first fuse← fuse(k, i)
26 rest fuse←

FindOptFusion(M + first fuse, i+ 1)
27 cur fuse← first fuse+ rest fuse
28 cur fuse time = f(M + cur fuse)
29 if cur fuse time < local opt fuse time then
30 local opt fuse← cur fuse
31 local opt time← cur fuse time
32 end
33 if cur fuse time < global opt time then
34 global opt fuse←M + cur fuse
35 global opt time← cur fuse time
36 end
37 end
38 return local opt fuse

where j < j∗. Because they cannot advance communication
to an earlier point than fusing from Tk to Tj∗ , pruning these
cases does not affect the optimality.

5 EXPERIMENTS

In this section, we will first show the performance im-
provement of Cupcake for GC algorithms with sparsifica-
tion and quantization. We then evaluate Time-to-Accuracy
to demonstrate that Cupcake can preserve the accuracy
of these applied GC algorithms. At last, we show that
Cupcake can find the optimal fusion strategy quickly.

Setup. Two testbed setups are used for the evaluations.

The first setup is the same as that described in Section 3.
The server has 8 GPUs and they are connected by PCIe 3.0
×16. The second setup has 8 GPU machines connected to a
25Gbps network. Each machine has 8 NVIDIA Tesla V100
GPUs (32 GB GPU memory) connected by NVLink and
48-core/96-thread processors (Intel Xeon 8260 at 2.40GHz).
The server has an Ubuntu 18.04.4 LTS system and the soft-
ware environment includes PyTorch-1.8.1, Horovod-0.22.1,
CUDA-11.1, and NCCL-2.9.9.

Workloads. We validate the performance of Cupcake on
two types of machine learning tasks: computer vision and
natural language processing (NLP). The models include
ResNet50 over CIFAR10 (Krizhevsky et al., 2009) and
ResNet101 (He et al., 2016) over ImageNet-1K (Deng et al.,
2009); BERT-base (Devlin et al., 2018) over SQuAD (Ra-
jpurkar et al., 2018). These models are widely used as
standard benchmarks to evaluate the scalability of DDT.
The batch sizes for ResNet50 and ResNet101 are 32 and for
BERT-base are 1024 samples.

Compression algorithms. We use four representative GC
algorithms: Rand-k (Stich et al., 2018) and DGC (Lin
et al., 2017) for sparsification with 99% sparsity, and EF-
SignSGD (Karimireddy et al., 2019) and OneBit (Seide
et al., 2014) for quantization. Error-feedback (Karimireddy
et al., 2019; Lin et al., 2017) is applied to GC algorithms to
preserve the model accuracy.

Baselines. We use Horovod (Sergeev & Del Balso, 2018)
as the training baseline without GC (FP32). We use
GRACE (Xu et al., 2020) and HiPress (Bai et al., 2021)
as the two layer-wise baselines for applying GC to DDT.
GRACE applies GC to all tensors in a model and HiPress
only compresses tensors greater than a threshold, which
is determined by the tensor size, network bandwidth, and
compression overhead.

Metrics. Suppose the training speed with n GPUs is Tn.
The scaling factor (Zhang et al., 2020) is defined as Tn

nT1
.

We use the scaling factor, Top-1 accuracy, and F1 score as
evaluation metrics. The results for scaling factors are re-
ported with an average of 100 iterations. We also report the
standard deviation using the error bar because the training
speed varies at times.

Allgather for communications. Allreduce is used for com-
munications in FP32 (Sergeev & Del Balso, 2018; Paszke
et al., 2019). Existing frameworks’ implementation of Allre-
duce requires tensors to be aligned and support element-
wise aggregations. However, compressed tensors typically
do not satisfy these requirements. For example, compressed
tensors using Rand-k have different indices for selected el-
ements, while those using Onebit cannot support addition.
In contrast, the implementation of Allgather (Thakur et al.,
2005) has no such restrictions. It gathers tensors from all

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

(a) ResNet50 (b) ResNet101 (c) BERT-base

Figure 6. The scaling factors of three DNN models running on a server with 8 GPUs connected by PCIe 3.0 ×16.

(a) ResNet50 (b) ResNet101 (c) BERT-base

Figure 7. The scaling factors of three DNN models running on 64 GPUs in 8 servers connected by a 25Gbps network.

GPUs and allows for customized aggregation operations
for compressed tensors. Therefore, we chose to use All-
gather in our implementation to communicate compressed
tensors (Xu et al., 2020; Wang et al., 2023).

5.1 Training Speed Improvement

Figure 6 shows the scaling factors of the three DNN models
running on a server with 8 GPUs connected by PCIe 3.0
×16. The four compression algorithms are applied with
Cupcake and the two layer-wise baselines, respectively.

We can see from Figure 6 that applying GC in a layer-
wise fashion can even harm the performance of DDT due
to the costly compression overhead. The scaling factors
of both ResNet50 and ResNet101 with GRACE compres-
sion are lower than those without any compression in most
cases. HiPress outperforms GRACE because it avoids en-
coding small tensors and incurs less compression overhead.
However, its improvement in the training throughput is just
modest compared to training without GC. Applying Rand-k,
DGC, and EFSignSGD to the training of BERT with HiPress
can improve the training speed, but it still harms the training
performance when the GC algorithm is OneBit.

In contrast, Cupcake significantly improves the training
speed of DDT with GC algorithms for the three DNN mod-
els compared to FP32. For the training of ResNet50, it
outperforms FP32 by up to 72% (apply Rand-k). It also
outperforms GRACE and HiPress by up to 130% and 64%

(apply OneBit), respectively. For ResNet101, Cupcake
outperforms FP32, GRACE, and HiPress by up to 39%,
70%, and 37%, respectively. For BERT-base, it outperforms
FP32, GRACE, and HiPress by up to 65%, 106%, and 61%,
respectively.

Figure 7 shows the scaling factors of the three DNN models
running on 8 servers (each has 8 GPUs) connected by a
25Gbps network. Because intra-machine communications
are supported by NVLink, which can provide every GPU in
total 1.2Tbps GPU-GPU bandwidth (Jiang et al., 2020), the
performance bottleneck is inter-machine communications.
Therefore, tensors are not compressed for intra-machine
communications and GC is applied for inter-machine com-
munications only. Figure 7 shows that the speedups of
Cupcake over FP32 are up to 93%, 46%, and 103% for
the training of ResNet50, ResNet101, and BERT-base, re-
spectively. It also outperforms HiPress by up to 79%, 37%,
and 58% for the training of the three models, respectively.

5.2 Time-to-Accuracy Improvement

Because HiPress is always better than GRACE in terms of
the training throughput, we compare Cupcake to HiPress
in this section. We train ResNet50 over CIFAR10 until
convergence on a server with 8 GPUs connected by PCIe
3.0 ×16. The applied GC algorithm is DGC. As shown in
Figures 8a, Cupcake can achieve around 1.68× speedup
over no compression (i.e. FP32), and 1.30× speedup over
HiPress. The achieved Top-1 accuracy with Cupcake is

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

(a) ResNet50 (b) ResNet101 (c) BERT-base

Figure 8. Cupcake achieves almost the same model accuracy as no compression. DGC and EFSignSGD are applied to the training of
ResNet50 over CIFAR10 and ResNet101 over Imagenet-1K, respectively. Both Rand-k and DGC are applied to the training of BERT-base
over SQuAD.

Table 1. Running time of Algorithm 1.
ResNet50 ResNet101 BERT-base

of tensors 161 314 207
Algorithm 1 2.8 s 6.6 s 4.2 s
Only Pruning 1 15 s 68 s 32 s
Only Pruning 2 2.2 h 9.4 h > 24 h
No Pruning > 24 h > 24 h > 24 h

93.2% (with HiPress is 93.1%), which is very close to the no-
compression accuracy of 93.6%. We also train ResNet101
for 120 epochs on ImageNet-1K from scratch and apply
EFSignSGD to the model training. Figure 8b shows that
Cupcake outperforms no compression and HiPress by
1.32× and 1.25×, respectively. The achieved Top-1 ac-
curacy with Cupcake, HiPress, and no compression is
76.7%, 76.6%, and 77.1%, respectively. In addition, we
conduct a test following the methodology in (Fei et al.,
2021) to fine-tune BERT-base for the question-answering
task on SQuAD (Rajpurkar et al., 2018) for two epochs
and repeat the experiments ten times. Figure 8c shows that
Cupcake with DGC can achieve around 1.65× speedup
over no compression and it has almost the same F1 score as
no compression.

5.3 Effectiveness of Cupcake

Computation time. We first measure the computation time
of Algorithm 1 with the two pruning techniques. Note that
the number of tensors in a DNN model, their sizes, and
the computation time of backpropagation are measured in
advance. The cost model of the communication time is
determined by the network bandwidth. We also profile the
encoding and decoding overheads of a GC algorithm, as
shown in Figure 2, to model the compression time.

Table 1 shows that it only takes several seconds for Algo-
rithm 1 to find the optimal fusion strategy for the three DNN
models when training them on a server with 8 GPUs con-
nected by PCIe 3.0 ×16. For example, the computation time
is only a few seconds even for ResNet101 which has 314

Figure 9. The scaling factors of three DNN models running on a
server with 8 GPUs. The GC algorithm is DGC.

tensors. However, the search cannot finish after running for
24 hours without the two pruning techniques, i.e., searching
for the optimal strategy with brute force.

Compared to strawman solutions. We also compare
Cupcake with the following two strawman solutions for
tensor fusion.

• Bucket Fusion (Li et al., 2020; Sergeev & Del Balso,
2018). It stores tensors in a buffer and fuses tensors in the
buffer when their total size exceeds a threshold. We set
different thresholds from 2 MB to 64 MB and use the best
performance as its performance.

• Evenly Split. It evenly splits consecutive tensors into
multiple groups for fusion and each group has the same
number of tensors. We set the number of groups from 2
to 32 and use the best performance as its performance.

We apply DGC with three fusion strategies, Cupcake,
Bucket Fusion, and Evenly Split, to three DNN models when
training them on a server with 8 GPUs. Figure 9 displays
their scaling factors. Both Bucket Fusion and Evenly Split
outperform the layer-wise baselines thanks to the reduced
compression overheads. Cupcake outperforms them by up
to 1.12× and 1.18×, respectively. Cupcake searches for
the optimal fusion strategy from the whole search space. We
observe that the number of tensors and the size of the fused
tensor vary a lot across groups in the optimal strategy for
the three evaluated DNN models. However, the two straw-
man solutions limit the search space and constrain that each
group has to have the same number of tensors or the same
fused tensor size, leading to suboptimal fusion strategies.

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

6 RELATED WORK

Many GC algorithms (Strom, 2015; Lin et al., 2017;
Tsuzuku et al., 2018; Alistarh et al., 2017; Seide et al.,
2014; Aji & Heafield, 2017; Wen et al., 2017; Karimireddy
et al., 2019; Shi et al., 2021; Wang et al., 2022; 2018b) have
been proposed to reduce the amount of communicated traffic
volume for gradient synchronization, as discussed in Sec-
tion 2.3. However, they are designed from an algorithmic
perspective and have no suggestion for how to efficiently
apply them to DDT. In contrast, Cupcake is not a GC algo-
rithm, but a compression optimizer to maximize the benefits
of GC algorithms from a system perspective.

Recent work (Xu et al., 2020; Agarwal et al., 2022) quanti-
tatively evaluated the impacts of GC algorithms in a layer-
wise fashion. They observe that GC can incur non-negligible
compression overheads, but they have no solution to address
the challenges of applying GC to DDT. HiPress (Bai et al.,
2021) proposes a selective compression mechanism to de-
termine whether to compress a tensor, but it still applies
GC algorithms to a DDT job in a layer-wise fashion and in-
curs costly compression overheads. Cupcake uses a fusion
fashion to minimize the incurred compression overheads.

Distributed deep learning frameworks batch multiple tensors
for one communication operation to improve communica-
tion efficiency (Sergeev & Del Balso, 2018; Li et al., 2020;
Chen et al., 2015; Romero et al., 2022). However, this
mechanism takes place after compression and is orthogonal
to GC algorithms. PipeSwitch (Bai et al., 2020) fuses ten-
sors to pipeline model transmission over the PCIe for fast
context switching of deep learning applications. In contrast,
Cupcake fuses tensors to improve compression efficiency.

7 CONCLUSION

Cupcake is a general compression optimizer to enable
GC algorithms to fully unleash their benefits to accelerate
the training throughput of DDT jobs. Instead of compress-
ing tensors in a layer-wise fashion, Cupcake applies GC
algorithms in a fusion fashion and can find the provably
optimal fusion strategy to maximize the training throughput
of compression-enabled DDT. Cupcake can significantly
improve the performance of DDT over full synchronization
and solutions with layer-wise compression.

ACKNOWLEDGMENT

We would like to thank our shepherd Ang Li and the anony-
mous reviewers for providing valuable feedback. Zhuang
Wang, Xinyu Crystal Wu, and T. S. Eugene Ng are par-
tially supported by the NSF under CNS-2214272 and CNS-
1815525.

REFERENCES

Tensorflow: A system for large-scale machine learning. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp. 265–283, 2016.

NVIDIA NCCL. https://developer.nvidia.
com/NCCL, 2021.

Agarwal, S., Wang, H., Venkataraman, S., and Papailiopou-
los, D. On the utility of gradient compression in dis-
tributed training systems. Proceedings of Machine Learn-
ing and Systems, 4:652–672, 2022.

Aji, A. F. and Heafield, K. Sparse communication for dis-
tributed gradient descent. 2017.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, pp. 1709–1720, 2017.

Arafa, Y., Badawy, A.-H. A., Chennupati, G., Santhi, N.,
and Eidenbenz, S. Low overhead instruction latency
characterization for nvidia gpgpus. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC),
pp. 1–8. IEEE, 2019.

Bai, Y., Li, C., Zhou, Q., Yi, J., Gong, P., Yan, F., Chen,
R., and Xu, Y. Gradient compression supercharged high-
performance data parallel dnn training. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pp. 359–375, 2021.

Bai, Z., Zhang, Z., Zhu, Y., and Jin, X. {PipeSwitch}:
Fast pipelined context switching for deep learning ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp. 499–
514, 2020.

Ben-Nun, T. and Hoefler, T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signSGD: Compressed optimisation for non-
convex problems. arXiv preprint arXiv:1802.04434,
2018.

ByteDance. BytePS. https://github.com/
bytedance/byteps, 2020.

Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R.
Revisiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous

https://developer.nvidia.com/NCCL
https://developer.nvidia.com/NCCL
https://github.com/bytedance/byteps
https://github.com/bytedance/byteps

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
578–594, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dettmers, T. 8-bit approximations for parallelism in deep
learning. arXiv preprint arXiv:1511.04561, 2015.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fei, J., Ho, C.-Y., Sahu, A. N., Canini, M., and Sapio, A.
Efficient sparse collective communication and its applica-
tion to accelerate distributed deep learning. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference, pp.
676–691, 2021.

Gupta, V., Choudhary, D., Tang, P. T. P., Wei, X., Wang,
X., Huang, Y., Kejariwal, A., Ramchandran, K., and
Mahoney, M. W. Fast distributed training of deep neu-
ral networks: Dynamic communication thresholding for
model and data parallelism, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32:103–112, 2019.

Jiang, P. and Agrawal, G. A linear speedup analysis of dis-
tributed deep learning with sparse and quantized commu-
nication. In Advances in Neural Information Processing
Systems, pp. 2525–2536, 2018.

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., and Guo, C. A uni-
fied architecture for accelerating distributed {DNN} train-
ing in heterogeneous gpu/cpu clusters. In 14th {USENIX}
Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 20), pp. 463–479, 2020.

Karimireddy, S. P., Rebjock, Q., Stich, S. U., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. arXiv preprint arXiv:1901.09847, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun,
R., Torralba, A., and Fidler, S. Skip-thought vectors. In
Advances in neural information processing systems, pp.
3294–3302, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania,
P., and Chintala, S. Pytorch distributed: Experiences
on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

Li, Y., Park, J., Alian, M., Yuan, Y., Qu, Z., Pan, P., Wang,
R., Schwing, A., Esmaeilzadeh, H., and Kim, N. S. A
network-centric hardware/algorithm co-design to acceler-
ate distributed training of deep neural networks. In 2018
51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pp. 175–188. IEEE, 2018.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. The International
Conference on Learning Representations (ICLR), 2017.

Luo, L., Nelson, J., Ceze, L., Phanishayee, A., and Krishna-
murthy, A. Parameter hub: a rack-scale parameter server
for distributed deep neural network training. In Proceed-
ings of the ACM Symposium on Cloud Computing, pp.
41–54, 2018.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. The stanford corenlp
natural language processing toolkit. In Proceedings of
52nd annual meeting of the association for computational
linguistics: system demonstrations, pp. 55–60, 2014.

Mellanox. Mellanox Corporate Update. https:
//www.mellanox.com/related-docs/
company/MLNX_Corporate_Deck.pdf, 2022.

https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf
https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf
https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

NVIDIA. A Timeline of Innovation for NVIDIA. ttps:
//www.nvidia.com/en-us/about-nvidia/
corporate-timeline/, 2021.

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone,
J. E., and Phillips, J. C. Gpu computing. Proceedings of
the IEEE, 96(5):879–899, 2008.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems, pp. 8024–8035,
2019.

Rajpurkar, P., Jia, R., and Liang, P. Know what you don’t
know: Unanswerable questions for squad. arXiv preprint
arXiv:1806.03822, 2018.

Renggli, C., Ashkboos, S., Aghagolzadeh, M., Alistarh,
D., and Hoefler, T. Sparcml: High-performance sparse
communication for machine learning. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15,
2019.

Romero, J., Yin, J., Laanait, N., Xie, B., Young, M. T., Tre-
ichler, S., Starchenko, V., Borisevich, A., Sergeev, A., and
Matheson, M. Accelerating collective communication in
data parallel training across deep learning frameworks. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pp. 1027–1040, 2022.

Sapio, A., Canini, M., Ho, C.-Y., Nelson, J., Kalnis, P., Kim,
C., Krishnamurthy, A., Moshref, M., Ports, D. R., and
Richtárik, P. Scaling distributed machine learning with in-
network aggregation. arXiv preprint arXiv:1903.06701,
2019.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Shi, S., Zhou, X., Song, S., Wang, X., Zhu, Z., Huang, X.,
Jiang, X., Zhou, F., Guo, Z., Xie, L., et al. Towards

scalable distributed training of deep learning on public
cloud clusters. Proceedings of Machine Learning and
Systems, 3:401–412, 2021.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified
SGD with memory. In Advances in Neural Information
Processing Systems, 2018.

Strom, N. Scalable distributed dnn training using commod-
ity gpu cloud computing. In Sixteenth Annual Conference
of the International Speech Communication Association,
2015.

Sun, P., Feng, W., Han, R., Yan, S., and Wen, Y. Optimizing
network performance for distributed dnn training on gpu
clusters: Imagenet/alexnet training in 1.5 minutes. arXiv
preprint arXiv:1902.06855, 2019.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Thakur, R., Rabenseifner, R., and Gropp, W. Optimization
of collective communication operations in MPICH. The
International Journal of High Performance Computing
Applications, 19(1), 2005.

Tsuzuku, Y., Imachi, H., and Akiba, T. Variance-based gra-
dient compression for efficient distributed deep learning.
arXiv preprint arXiv:1802.06058, 2018.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
Practical low-rank gradient compression for distributed
optimization. arXiv preprint arXiv:1905.13727, 2019.

Wang, H., Sievert, S., Charles, Z., Liu, S., Wright,
S., and Papailiopoulos, D. Atomo: Communication-
efficient learning via atomic sparsification. arXiv preprint
arXiv:1806.04090, 2018a.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos,
D., and Wright, S. Atomo: Communication-efficient
learning via atomic sparsification. Advances in Neural
Information Processing Systems, 31, 2018b.

Wang, L., Wu, W., Zhang, J., Liu, H., Bosilca, G., Her-
lihy, M., and Fonseca, R. Fft-based gradient sparsifica-
tion for the distributed training of deep neural networks.
In Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing,
pp. 113–124, 2020.

ttps://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
ttps://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
ttps://www.nvidia.com/en-us/about-nvidia/corporate-timeline/

Cupcake: A Compression Optimizer for Scalable Communication-Efficient Distributed Training

Wang, Z., Xu, Z., Wu, X., Shrivastava, A., and Ng, T. E.
Dragonn: Distributed randomized approximate gradients
of neural networks. In International Conference on Ma-
chine Learning, pp. 23274–23291. PMLR, 2022.

Wang, Z., Lin, H., Zhu, Y., and Ng, T. E. Hi-speed dnn
training with espresso: Unleashing the full potential of
gradient compression with near-optimal usage strategies.
In Proceedings of the Eighteenth EuroSys Conference,
2023.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error
compensated quantized SGD and its applications to
large-scale distributed optimization. arXiv preprint
arXiv:1806.08054, 2018.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou,
E. H., Karatsenidis, K., Canini, M., and Kalnis, P. Com-

pressed communication for distributed deep learning: Sur-
vey and quantitative evaluation. Technical report, 2020.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu,
Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An efficient
communication architecture for distributed deep learning
on GPU clusters. In 2017 USENIX Annual Technical
Conference (ATC), pp. 181–193, 2017.

Zhang, Z., Chang, C., Lin, H., Wang, Y., Arora, R., and Jin,
X. Is network the bottleneck of distributed training? In
Proceedings of the Workshop on Network Meets AI & ML,
pp. 8–13, 2020.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali,
A., Wang, Y., Yang, J., Zhuo, D., Sen, K., et al. Ansor:
Generating high-performance tensor programs for deep
learning. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20), pp.
863–879, 2020.

Zinkevich, M., Weimer, M., Smola, A. J., and Li, L. Paral-
lelized stochastic gradient descent. In NIPS, volume 4,
pp. 4. Citeseer, 2010.

	Introduction
	Background
	Data-parallel Distributed Training
	Communication Bottleneck in DDT
	Gradient Compression Algorithms
	Overlapping Communication with Computation

	The Practical Performance of GC with Layer-wise Compression
	The Root Cause of the Poor Performance
	An Opportunity and a Challenge

	Cupcake
	Problem Formulation
	The Optimal Fusion Strategy

	Experiments
	Training Speed Improvement
	Time-to-Accuracy Improvement
	Effectiveness of Cupcake

	Related Work
	Conclusion

