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ABSTRACT

Traffic aggregates in cloud data center networks are by and large
buffered and transmitted by simple physical FIFO queues. Despite
the crucial role they play, a well-known problem of physical FIFO
queues is that they are unable to provide precise bandwidth guar-
antees. This leads to a range of negative impacts spanning the
application layer, the transport layer, and the data link layer.

In this paper, we address this problem with Augmented Queue
(AQ), a scalable in-network abstraction that provides precise band-
width guarantees for traffic constituents. AQ serves multiple valu-
able use cases in data center networks. For example, AQ facilitates
the isolation of traffic from different applications; ensures that dif-
ferent congestion control algorithms can properly co-exist; and
enforces inbound and outbound bandwidth for virtual machines.
We demonstrate via testbed and simulation experiments that AQ
can provide precise bandwidth guarantees and scale to millions of
traffic constituents.
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1 INTRODUCTION

Large cloud infrastructures such as Azure, AWS, and Google Cloud
handle the network traffic of millions of customers every day. De-
spite the extreme number of customers and applications sharing
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their networks’ bandwidth, at the lowest level, aggregated net-
work traffic traversing each switch port is buffered and transmitted
by a small number of — and sometimes even just one — physical
FIFO queue (or "physical queue"” for short). To govern how physical
queues are shared, cloud providers rely on end-to-end congestion
control (CC) algorithms as well as traffic rate limiters at end hosts.

However, a well-known problem of physical queues is that they
are unable to provide precise bandwidth guarantees for different
traffic constituents, which negatively impacts multiple network
layers. At the application layer, traffic from aggressive and gentle
applications alike sharing a physical queue can interfere with each
other, leading to unpredictable performance that can vary by an
order of magnitude [8, 37, 49, 62]. At the transport layer, the phys-
ical queue cannot ensure the proper co-existence of different CC
algorithms that greatly differ by their optimization objectives (e.g.,
low delay vs. full utilization), their feedback signals (e.g., packet
loss signal vs. ECN signal vs. delay signal), and their ramp-up ramp-
down aggressiveness [58]. At the link layer, a virtual machine (VM)
may want precise specifications for both its inbound and outbound
bandwidth (i.e., no more, no less) [1, 14, 16, 33]. However, not only
is the physical queue unable to guarantee a bandwidth minimum,
but it can also release traffic that exceeds the specified bandwidth
when the specified bandwidth is less than the link capacity.

Many cloud providers have confirmed that these problems are
common in production environments [27, 32, 55]. Nevertheless,
shared physical queues are still extensively employed because
no practical and superior alternative exists. Specifically, per-flow
queue [26] seems like a plausible solution that works by isolating
traffic in dedicated queues, but in reality, it does not scale well
because the number of tenants in a data center is several orders
of magnitude greater than the number of per-flow queues avail-
able in today’s switches [3, 64]. Furthermore, per-flow queues can
also release traffic that exceeds the specified VM bandwidth at the
link layer. CC algorithms and rate limiters at end hosts help lessen
the problems with physical queues but they are far from sufficient.
First, although a well-designed CC algorithm allows fair sharing
of the network, it cannot support flexible and precise bandwidth
guarantees [63]. Second, although rate limiters at end hosts can
prevent overly aggressive injection of traffic, they cannot address
the aforementioned problems in the transport layer when different
CC algorithms share the physical queue. Furthermore, depending
on how the limiters are configured, the inbound bandwidth specifi-
cation of a VM can be under-utilized or violated depending on the
traffic pattern among VMs [59].

In this paper, we propose Augmented Queue (AQ), an in-network
abstraction to provide precise bandwidth guarantees for different
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traffic constituents. AQ can isolate traffic from different applications
and mitigate performance interference. It also provides different
types of network feedback, such as packet loss, ECN, and delay, for
different CC algorithms simultaneously. In addition, it can control
traffic rates independent of the physical queue length.

The core idea of AQ to provide traffic constituents with pre-
cise bandwidth guarantees is controlling their rate based solely on
their own traffic. There are two challenges in the design of AQ.
The first challenge is determining what measure can be suitably
used for traffic rate control. We observe that the physical queue
length is not a suitable option because it leads to inflexibility in
reflecting the relation between the traffic rate and the allocated
rate. Instead, AQ controls the rate with a deliberately-designed
measure function that can provably allow a traffic constituent to
achieve the precise bandwidth guarantee in a shared network. The
second challenge lies in devising a scalable and efficient approach
to control the traffic rate for different traffic constituents separately.
AQ converts the measure function from a continuous domain to a
discrete domain, allowing the control of traffic rate at the packet
level. It then differentiates and guarantees bandwidth for traffic
from different constituents based on the measure function, gener-
ates different network CC feedback, and limits the rates of different
traffic constituents simultaneously. AQ can support millions of traf-
fic constituents for precise bandwidth guarantees, regardless of the
number of physical queues in switches.

In summary, we make the following contributions:

e We analyze the limitations of physical queues and discuss
the feasibility to relieve the data center’s reliance on physical
queues for data center network sharing.

e We propose Augmented Queue (AQ), a scalable in-network ab-
straction to provide precise bandwidth guarantees for millions
of traffic constituents simultaneously.

o We prototype AQ in both NS3 simulation and a Tofino testbed.
The evaluations show that AQ can achieve precise bandwidth
guarantees for the application layer, transport layer, and link
layer. For example, when two applications expect to fairly share
a network, AQ can bound the difference of their shared band-
width between 0.99 and 1.01; but the difference with physical
queues and rate-limiting solutions can be arbitrary.

2 MOTIVATION

In today’s data center networks, a switch is typically equipped
with physical queues in which packets are buffered and transmitted.
These physical queues can absorb traffic burstiness to reduce packet
drops. In addition, many congestion control (CC) algorithms rely on
the congestion information provided by physical queues, such as the
physical queue length and queuing delay, to optimize for low latency
and high network utilization. Physical queues possess two essential
properties: 1) they are shared by all the traffic passing through them,
regardless of their applications and the applied CC algorithms; and
2) they require built-up queues to generate congestion signals, i.e.,
the incoming traffic rate should surpass the line rate. These two
properties, we contend, impose fundamental limitations on physical
queues to provide precise bandwidth guarantees.

2.1 Traffic from Different Applications Can
Interfere in Physical Queues

Today’s data centers can isolate the compute, memory, and disk
resources for different applications [19, 27]. However, the network
is still shared by different applications and their traffic can inter-
fere with each other. They can experience unpredictable network
performance and their throughput can vary by an order of mag-
nitude [8, 36, 37, 49, 53, 60, 62]. In order to achieve predictable
network performance, we argue that data centers should provide
isolation for multiple applications to better share the network.

Goal 1: Provide network isolation for different applications.
Each application has a specific bandwidth requirement and we can
regard an application as an entity. The sharing of the network for
an application on a bottleneck link is only determined by its own
allocated bandwidth, regardless of the traffic protocols in use (i.e.,
TCP or UDP) and the number of flows [45, 46, 53].

Example 1: Suppose multiple distributed applications are shar-
ing a network link. Each involves multiple VMs and can generate
an arbitrary number of flows. They require an equal amount of
bandwidth on the network bottleneck link. Unfortunately, a physi-
cal queue alone cannot satisfy this requirement. For example, ap-
plications with UDP traffic have the potential to monopolize the
bandwidth and starve applications with TCP traffic. Furthermore,
when all applications generate TCP traffic, the bandwidth sharing
among these applications is determined by the number of flows
generated by each of them due to the fairness property of the CC
algorithms [4, 22, 34]. Because the number of flows an application
can generate is arbitrary, the bandwidth sharing is also arbitrary.
Although a switch may have several physical queues, the number
is limited and it is unlikely that the switch can allocate a dedicated
physical queue to each application. Therefore, some applications
have to share a physical queue, resulting in arbitrary bandwidth
sharing among them.

2.2 Different CC Algorithms Are Hard to
Coexist in Physical Queues

Many CC algorithms [4, 22, 34, 39, 68] have emerged in recent
years, targeting different optimization objectives (e.g., high band-
width, network stability, and ultra-low latency), using different
types of congestion signals (e.g., loss, ECN, and delay), and having
different ramp-up ramp-down aggressiveness. Different tenants
or even different applications of a tenant may prefer different CC
algorithms to meet their performance requirements. For example,
latency-sensitive applications, such as high frequency trading [20],
demand extremely low latency and thus may prefer CC algorithms
like Swift [34] and HPCC [39]. On the other hand, throughput-
intensive applications, such as distributed training [30, 38, 50],
prioritize high throughput and hence prefer CC algorithms like
DCTCP [4] and DCQCN [68]. In addition, when developing and
upgrading CC algorithms in data centers, multiple CC algorithms
can be expected to co-exist under the same cluster to avoid physical
partitioning and application migration. Therefore, we argue that
data centers should support multiple CC algorithms sharing the
network simultaneously.
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Figure 1: Traffic interference Figure 2: An example of bi-
between different CC algo-directional bandwidth guaran-
rithms when they share a tees for VMs.

physical queue.

Goal 2: Provide network isolation for different CC algorithms.
A tenant can use different CC algorithms for its different applica-
tions based on different optimization objectives and performance
requirements. We can regard a CC algorithm in a tenant as an en-
tity that can involve one or multiple applications. Each entity can
specify its expected bandwidth for sharing the bottleneck link in
data center networks.

Example 2: Suppose that multiple entities are sharing a network
with different CC algorithms and they require to fairly share the
network. A physical queue alone cannot evenly distribute network
bandwidth among entities. Because traffic from different CC algo-
rithms shares the same physical queue, they have to suffer the same
degree of congestion. However, different algorithms react differ-
ently under the same congestion, leading to different behaviors and
bandwidth sharing.

To illustrate the interference of different CC algorithms, we
measure the throughput of different CC algorithms using a shared
dumbbell topology with 10Gbps link capacity. We evaluate three
types of CC, i.e., drop-based: CUBIC [22] and NewReno [17]; ECN-
based: DCTCP [4]; and delay-based: Swift [34]. We use two CC
algorithms at a time, with each supporting 10 traffic flows. As shown
in Figure 1, different CC algorithms cannot coexist gracefully and
fairly share the network fabric. For example, the DCTCP traffic
aggressively captures a significantly larger bandwidth compared
to those drop-based CC algorithms. Specifically, when sharing the
network bottleneck link with CUBIC, the throughput of DCTCP is
8.7Gbps while the throughput of CUBIC is only 0.7Gbps. Similarly,
Swift traffic struggles when sharing the network fabric with other
CC algorithms, as its throughput falls below 0.2Gbps, leaving it
nearly starved.

Even with multiple physical queues, it is still difficult to fairly
share the network bandwidth among different entities. Due to the
limited number of physical queues in a switch, we cannot allocate
a dedicated queue to each entity or each tenant. Traffic from some
entities or tenants has to share the same queue. One way to share
the queues is to allocate a physical queue to each CC algorithm,
and traffic with the same CC from different tenants needs to share a
physical queue. It is equivalent to the case that multiple distributed
applications using the same CC are sharing a physical queue, as
discussed in Section 2.1, and it is unable to satisfy the requirement
in Example 1.

2.3 Physical Queues Cannot Achieve Inbound
and Outbound Bandwidth Guarantees for
VMs

A tenant in a data center typically consists of multiple virtual ma-
chines (VMs) that communicate with each other. Because the net-
work is shared in a best-effort manner, it is common for tenants to
require reserved network bandwidth for their VMs to avoid traffic
interference and to achieve predictable network performance [1, 8].
Analogous to physical machines with inbound and outbound band-
width regardless of the traffic patterns, we argue that data centers
should reserve exact network bandwidth for VMs [14, 16, 33].

Goal 3: Provide bi-directional bandwidth guarantees for dif-
ferent VMs. A tenant can specify the expected network bandwidth
reservations for each of its VMs. We can take a VM as an entity.
Each VM has an illusion that it occupies a network cloud exclu-
sively with the reserved inbound and outbound bandwidth for any
traffic patterns.

Example 3: Suppose multiple VMs are sharing a network and they
can communicate with each other. Each VM can have a traffic profile
for its bi-directional bandwidth, i.e., the network allocates an exact
bandwidth to both directions. Each VM expects to send traffic to
and receive traffic from all the other VMs simultaneously with the
guaranteed bandwidth.

Physical queues alone cannot satisfy this traffic profile. They
can generate congestion signals, such as ECN and packet loss, to
inform end hosts to adjust their sending rates when they have
built-up queues. However, they cannot generate congestion signals
when the ingress traffic line is always lower than the line rate. For
example, in Figure 2, four VMs are connected through a network
with 25Gbps link capacity. Each VM has a traffic profile with a
5Gbps outbound bandwidth and a 5Gbps inbound bandwidth. Their
traffic patterns among each other are arbitrary. Because the profiled
bandwidth of each VM is lower than the link capacity, there are
no queues built-up in physical queues and they cannot generate
congestion signals for VMs to control their rates.

It is possible for rate limiters at end hosts to achieve outbound
bandwidth limits for VMs, but they cannot satisfy bi-directional
guarantees. For example, it is common to limit the outbound band-
width of VMs, i.e., their sending rates, but it can violate the inbound
bandwidth required by the traffic profile. After deploying a rate
limiter of 5Gbps at each VM, a VM can receive at most 15Gbps
when three VMs send traffic to the same one simultaneously, much
higher than the specified 5Gbps inbound bandwidth.

In order to achieve the required inbound bandwidth guarantee,
one needs to assume the traffic pattern among VMs to allocate
bandwidth to each VM pair [37, 53]. However, because the traffic
pattern can be arbitrary, any allocation strategy can lead to un-
derutilized bandwidth. Take VM A as an example. To guarantee
its 5Gbps inbound bandwidth, one strategy is to equally split this
bandwidth among the other three VMs, i.e., each of them can send
traffic to VM A at the rate of 5/3Gbps. It is likely that VM B and
VM C have no traffic to send to VM A during a period and only
VM D communicates with VM A. Due to the mismatch between
the traffic pattern and the specified strategy, only one-third of the
inbound bandwidth of VM A is utilized.



2.4 Relieve the Reliance on Physical Queues

Based on the aforementioned discussion, we can conclude that
physical queues are incapable of supporting two fundamental and
critical functionalities: 1) to provide different congestion signals
for different CC algorithms; and 2) to limit the rates of distributed
applications, CC algorithms, and VMs. We observe that achieving
these two functionalities does not necessarily depend on the physi-
cal queues, but the discrepancy between the allocated rate and the
traffic rate (refer to Section 3.2). However, the key challenge is
how to capture the discrepancy for different applications, CC algo-
rithms, and VMs, respectively. The recent trend of programmable
switches [6, 10, 23, 41] in data center networks provides a new
opportunity. Since programmable switches can support customized
packet processing and provide stateful memory [11], it is feasible
to differentiate traffic, monitor and limit their rates separately, and
generate different congestion signals, regardless of the number
of physical queues. Hence, we propose an in-network augmented
queue (AQ) abstraction to capture the discrepancy and provide
these two functionalities for tenants.

3 AUGMENTED QUEUE ABSTRACTION

In this section, we first introduce the design requirements for traffic
rate control of different entities. We then analyze the feasibility
to relieve the reliance on physical queues and explore alternative
options to achieve rate limiting and generate different network
feedback. Finally, we provide a detailed design for AQ with a math-
ematical model and a framework that allows for better traffic rate
control of different entities.

3.1 Design Requirements

Before presenting the AQ abstraction, we first discuss three require-
ments that are necessary for effective traffic rate control among
different entities.

R1: Provide rate limiting for entities. Different entities sharing
the network can specify their required bandwidth. For example, a
distributed application or a CC algorithm can expect an aggregated
bandwidth of all its traffic on a network bottleneck; a VM can
also expect that both its inbound and outbound rates conform to
a specific traffic profile. Each entity should be provided with the
illusion that its traffic could exclusively use a network with the
allocated bandwidth.

R2: Provide different network feedback for different entities.
The traffic of multiple entities can share a single physical queue
in the network. In case of network congestion, these entities can
make different contributions to physical queuing. The network
should differentiate their different contributions and provide differ-
ent network feedback to regulate their traffic accordingly. Because
different entities can choose their preferred CC algorithms, the
network should simultaneously provide different types of network
congestion signals, such as packet loss, ECN marking, and queuing
delay, based on different configurations, such as the maximum limit
to drop packets, ECN thresholds, and target queuing delay. In addi-
tion, the network feedback of an entity should only depend on its

own traffic and the generation of the feedback should be triggered
independently at different times for different entities.

R3: Scale to a large number of entities. Entities of different
granularities can be formed based on different requirements and
network scenarios, such as different applications, different CC al-
gorithms, and VMs sharing a network. Because of the increasing
number of applications, CC algorithms, and VMs in today’s data
centers, there could be a large number of entities, e.g., hundreds of
thousands of entities, sharing the same physical link. The number
of physical queues in commodity switches cannot keep up with
this scale in cloud networks. A practical AQ abstraction must be
scalable to accommodate a large number of sharing entities in data
center networks.

3.2 Rethink What to Use for Traffic Rate
Control

Suppose an entity has traffic flows from different sources and these
flows share a network bottleneck link. We define the allocated rate R
of an entity as the bandwidth allocated to its traffic in the bottleneck
link. The allocated rate can be equal to or less than the link capacity.
We also define the arrival rate r(t) of an entity as the aggregated
throughput of its traffic entering the bottleneck link at time ¢.

Analogous to the analysis in Generalized Processor Sharing
(GPS) [31, 44, 65], we define a source is backlogged when it has
packets to be transmitted. Therefore, a source has two types of
time periods: backlogged periods and empty periods, and it has no
packets to send during the empty periods. Similarly, we define an
entity is backlogged when it has any backlogged sources and an
entity is empty when it has no backlogged sources.

During backlogged periods of an entity, the goal of the traffic
control is to ensure that

[r(t) — R| < €, ¥t in backlogged periods. (1)

where € is an arbitrary small positive number. However, it is very
challenging to satisfy Expression (1) for every time point in back-
logged periods. r(t) is contributed by all the backlogged sources
and the set of backlogged sources is changing over time. Suppose
r(t) = R at time ¢ and some sources turn to empty from backlogged
after time t. The traffic rates of backlogged sources need to be ad-
justed; otherwise, the arrival rate will be smaller than R. It takes
time for rate adjustment and Expression (1) cannot be satisfied
during the adjustment.

Therefore, a practical goal of traffic control during backlogged
periods is to ensure that the average of r(t) over a given time inter-
val § approximates R. In other words, the traffic volume entering
the bottleneck link during § approximates JR, i.e.,

t+0
| / r(t)dt — OR| < €, (t,t+ 8] in a backlogged period.  (2)
t

We can see that Expression (1) focuses on the rate difference for
every time point, but Expression (2) focuses on the byte difference
during a time interval.

Because we only care about the arrival rate in backlogged peri-
ods, we split the time into intervals (0, t1], (t1, 2], ..., (tms tm+1]
according to the two types of time periods, which alternate in these
intervals. For example, suppose (t;, ti+1] is a backlogged period,
then (tj41, ti+2] is an empty period.



In the following, we will discuss what can be used to control the
traffic rate to satisfy Expression (2) for each entity. There are two
mechanisms for traffic rate control: 1) the traffic rate is adjusted
by a CC algorithm according to the network feedback; and 2) the
traffic rate is limited by a rate limiter. We will discuss these two
mechanisms separately.

3.2.1 Traffic rate control with CC. In today’s data center, the
network feedback for different CC algorithms is heavily coupled
with physical queues. For example, packets are dropped when the
queue length reaches a limit; ECN is marked on packets when the
queue length exceeds a threshold; and queuing delay is determined
by the physical queue length.

However, this coupling leads to inflexibility that makes cer-
tain traffic rate control outcomes unachievable. In Example
3 in Section 2.3, the allocated rate R of each VM is 1/5 of the link
capacity. VMs are expected to receive feedback from the network
to inform them to decrease their traffic rates when r(t) is greater
than 5Gbps. However, there is no queue build-up in the physical
queue. Another example is that multiple entities can share the net-
work. Suppose the arrival rate of one entity is much lower than
its allocated rate, but the network is still saturated by traffic from
other entities and the physical queue length exceeds the threshold
to generate network feedback. However, this entity should not be
one of them to receive feedback to reduce the traffic rate.

Our proposal. In this paper, we decouple the network feedback
from the physical queue length and propose to adjust the traffic rate
of an entity according to the discrepancy between its allocated rate
and arrival rate. In other words, the network feedback is determined
by the discrepancy, and the traffic control of an entity is only related
to its own traffic and independent of the traffic from other entities.

Next, we will discuss how to define the function for the discrep-
ancy between the allocated rate and the arrival rate to generate
network feedback and achieve Expression (2).

A strawman function for the discrepancy. Consider taking the
integrated difference between r(t) and R in a time interval [¢, t + §]
as the discrepancy, defined as:

+8
d(t,t+5):/t r(t) dt - SR. 3)
t

When the integrated difference is negative, it implies increasing the
traffic rate, and vice versa. The integrated difference is a continuous
function with respect to time. It can be positive at the end of a back-
logged period. Though the integrated difference keeps decreasing
during the next empty period, it might be still greater than zero at
the beginning of the next backlogged period. Therefore, we define

the strawman function as:
D) { D(t;) +d(ti, t), if t € (t;, tir1] that is backlogged, 4)

t) =
max{0, D(t;) — R(t — t;)}, if t € (¢, ti+1] that is empty. (5)

D(t) is initialized as zero. One CC algorithm can use D(t) as the
discrepancy to generate the network feedback to adjust r(t). To
achieve Expression (2), it is equivalent to achieving the following
expression:

|[D(t +98) — D(t)| < e, (t,t+ 6] in a backlogged period.  (6)

z,-i—A

(a) D(t) is used. The average of r(t) (b) A(¢) is used. r(¢) is close to R be-
approximates R, but r(¢#) can be much cause the surplus is not allowed. A(#) can
higher than R. minimize traffic bursts.

4 H+A 1

Figure 3: The varying arrival rate of an entity with different
functions for the discrepancy. The applied CC overly reduces
the traffic rate.

The strawman has limitations. Unfortunately, there are dis-
advantages when using D(t) as the function for the discrepancy
because it allows an entity to use the surplus, i.e., the value of |D(t)|
when D(t) < 0 in backlogged periods. Figure 3(a) illustrates the
arrival rate r(t) of an entity and it uses D(t) as the discrepancy
to generate network feedback with D(t;) = 0. The applied CC al-
gorithm aims for zero queuing delay; it overly reduces the traffic
rate and leads to a negative D(¢) in backlogged periods. When r(t)
exceeds the allocated rate R, D(t) becomes positive and the CC
algorithm aggressively decreases r(t) from ry. Then D(t) becomes
negative and the CC increases r(¢) until it reaches r1 and D(t) > 0
again. Because the surplus is used, r; is higher than ry. Similarly,
the arrival rate rp in the next cycle can be even higher than ry.
Although D(#; + A) = D(t1) = 0 and it achieves Expression 2, the
arrival rate can be either much higher or lower than R. It can lead
to severe queuing delays and even packet loss. For example, when R
is equal to the link capacity and r(t) is approaching r, the network
congestion keeps worsening because the traffic rate is increasingly
higher than the link capacity.

The A-Gap function for the discrepancy. We argue that the us-
age of surplus to generate network feedback should not be allowed.
We refine the strawman function to calculate the discrepancy of
each entity with the A-Gap as

A(t+¢€) =max{0,A(t) +d(t,t +¢)}, (7)

where A(0) = 0. The A-Gap function is set to zero when A(t) +
d(t,t + ) < 0, regardless of the period is backlogged or empty.
The A-Gap equals the physical queue length when the allocated
rate R is the link capacity, but they are different when R is smaller
than the link capacity. For example, the allocated rate R for an entity
is 5Gbps and the link capacity is 25Gbps. When the arrival rate is
6Gbps, its A(t) > 0, but the physical queue length is always zero.
Using A(t) as the function for the discrepancy can address the
disadvantages resulted from using D(t) as the function. Figure 3(b)
illustrates the arrival rate r(t) of an entity with A(¢) as the dis-
crepancy to generate network feedback. The arrival rate begins to
decrease when it reaches ry and A(t) bottoms out at zero. When the



CC algorithm increases r(t) again, the arrival rate can only achieve
ro, rather than ry, because the surplus is not allowed.

The guideline to use the A-Gap. Using A(t) as the function can
isolate the traffic from different entities. It also penalizes entities
that apply ill-designed CC algorithms. Here we provide a condition
for how to achieve Expression (2) when using the A-Gap as the
function for the discrepancy to generate network feedback.

Lemma 3.1. To achieve Expression (2), one CC algorithm should
ensure

{ |A(t+ ) — A(t)| < €, (t,t+ 3] in a backlogged period,  (8)
A(t) > 0, t in a backlogged period. 9)

According to the definition of A(#) in Expression (7), we have
A(t +6) = A(t + 6) +d(t,t + §) when A(t) is always positive.
Therefore, |A(t + ) — A(t)| = |d(t,t + 5)|. If Expression (8) holds,
Expression (2) also holds. Lemma 3.1 implies that a CC algorithm
should keep A(t) positive to make the traffic rate conform to the
allocated rate. When R is the link capacity, it implies that a CC
algorithm should keep the physical queue length greater than zero
to fully utilize the bottleneck link bandwidth if it uses the network
feedback to adjust the traffic rate.

3.2.2  Traffic rate control with rate limiters. A rate limiter can
also control the traffic rate without any assumptions on the trans-
port protocols (i.e., TCP or UDP) and applied CC algorithms. As
aforementioned, when R is less than the link capacity, the physical
queue length is unrelated to the arrival rate and it alone cannot
limit the traffic rate to R.

We can control the traffic rate with a rate limiter based on the
A-Gap function. The A-Gap keeps increasing when the arrival rate
exceeds the allocated rate. If there is no constraint on the A-Gap for
an entity, r(¢) can be arbitrarily greater than R, contradicting the
purpose of a rate limiter. We can address this issue by limiting an
entity’s maximum A-Gap, which is denoted as limit, to bound the
difference between r(t) and R in backlogged periods. According to
Expression (7), we have A(t + €) > A(t) +d(t, t + €) given a time
interval [¢, t + €] in a backlogged period. Because A(t + €) < limit
and A(t) > 0, we have d(t, t+€) < limit. According to the definition
of d(t, t + €) in Expression (3), the difference between the average
of r(t) and R in the time interval [t,t + €] is bounded by limit/§.

Takeaways. We can conclude that realizing the two mechanisms
for traffic rate control does not depend on the physical queue length.
The rate control of an entity should be related to its own traffic only,
and independent of traffic from other entities. In addition, we can
use the A-Gap function as the discrepancy for traffic rate control
of different entities.

3.3 Augmented Queue Design

An Augmented Queue (AQ) is defined by an allocated rate R and the
A-Gap function. It can calculate the A-Gap for each entity and allow
entities to control their traffic rate according to the A-Gap. In this
section, we will first develop a streaming algorithm to accurately
compute the A-Gap. We then devise a framework that uses the
A-Gap to provide traffic rate control.

3.3.1 A mathematical model to compute the A-Gap. According
to Expression (7), the definition of the A-Gap is in a continuous
domain and it is a function of R, r(¢) and time ¢t. However, it is very
challenging to derive the varying arrival rate r(¢) and to calculate
the A-Gap for every time point.

In practice, the arrival time of packets is discrete and there are
time gaps between the arrivals of any two packets. These time gaps
can be viewed as empty periods, allowing us to only care about the
A-Gap of the time each packet arrives. Given a sequence of packets
and py. is the k%" packet. The packet index starts from 1. py..time is
the arrival time of p; and pyg.size is its packet size. We also denote
A(k) = pg.time — pr._1.time.

Theorem 3.2. The A-Gap can be calculated with the following
recurrence relation:

{ A(0) =0, (10)
A(py.-time) = max{0, A(py_;.time) — A(k)R} + py.size. (11)
Proof. According to the definition of the A-Gap in Expression (7),

we have py._;.time < py.time — § < py.time where ¢ is any small
time interval. We first compute A(pg.time — §).

A(py.time — )
=max{0, A(py_;.time) + d(py_; .time*, py.time — 5)}

Pk.time—6
=max{0, A(pg_1.time) + / (r(t) —=R)dt}
Pk-1.time*

=max{0, A(pg_1.time) — A(k)R + SR},
where py_.time* is the time point right after py_; arrives. Note

.time—3 . . .
that /pikl ;T,;e+ r(t) dt = 0 because no packet arrivesin (py_1.time,

pr-time — 8]. We then compute A(py.time™), where py.time™ is
the time point right before py arrives.

A(py.time™)
=max{0, A(py.time — 8) + d(py.time* — &, py..time™)}
Pr-time”
=max{0, A(pg.time — ) — (r(t) — R)dt}
prk.timet =6

=max{0, A(py.time — §) — SR}.

Pk-time™
Note that o time+—8

r(t) dt = 0 because no packets arrive during
(pg-time — 8, pr..time). When A(py.time — &) > 0, we have
A(pg.time™) = max{0, A(pg.time — §) — 6R}

= max{0, A(pg_1.time) — A(k)R+ SR — SR} (12)

= max{0, A(pr_,.time) — A(k)R}.
When A(py.time — §) = 0, we have

A(pg.-time™) = max{0, A(py.time — §) — 6R}
= max{0, —6R} = 0.
Combining Expression (12) and Expression (13), we can get
A(pg.time™) = max{0, A(pg_1.time) — A(k)R}.
Packet py arrives at time pg.time so that we have
A(pg-time) = max{0, A(pr_q.time) — A(k)R} + py.size.

Since A(0) = 0, we have the recurrence relation in Theorem 3.2. O



Algorithm 1: The streaming algorithm

Algorithm 2: The framework for traffic control

Input: aq is an augmented queue. aq.rate is its allocated
rate and aq.gap is its A-Gap.
1 Function A_Gap(agq, pkt):
2 A = pkt.time — aq.last_time
3 aq.gap = max(0, ag.gap — A = aq.rate) + pkt.size
4 aq.last_time = pkt.time
5 return aq.gap

Algorithm 1 illustrates a streaming algorithm to calculate the
A-Gap of an AQ for the arrival of every packet according to Theo-
rem 3.2, regardless of whether the packets are in backlogged periods
or empty periods.

3.3.2 A framework to control the traffic rate. We provide a frame-
work with the AQ abstraction to limit the traffic rates and generate
network feedback for different entities based on the discrepancy
calculated with the A-Gap function. The pseudocode is shown in
Algorithm 2.

Rate limiters. The AQ abstraction can provide rate-limiting for
entities, regardless of underlying protocols (i.e., TCP or UDP) and
CC algorithms. As discussed in Section 3.2, each AQ has a maximum
A-Gap limit, which guarantees that the arrival rate can converge to
the allocated bandwidth R. For any incoming packet py, the A-Gap
A(py.time) is calculated with Theorem 3.2 when the packet arrives.
If A(pg.time) > limit, the AQ drops the packet, preventing it from
entering the network (Lines 2-4 in Algorithm 2). Note that this
limit is an intrinsic property of AQ, similar to the queue limit that
restricts the number of packets or bytes in a physical queue.

Network feedback generation. The AQ abstraction can also gen-
erate congestion signals as the network feedback for different enti-
ties to adjust the traffic rates. Entities are allowed to specify their
own CC algorithms and configurations based on their requirements.
Different types of CC algorithms can be supported.

e Drop-based CC algorithms [17, 22, 40]. They are naturally
supported by the AQ abstraction because packets are dropped
when the A-Gap is greater than the AQ limit and no additional
actions are needed.

ECN-based CC algorithms [4, 18, 67]. They require ECN marked
in packets as the network feedback to adjust the rate. An AQ
can generate ECN signals based on the A-Gap and support
different trigger conditions and marking actions (Lines 6-7).
Take DCTCP as an example. With a physical queue, it triggers
ECN marking operations when the physical queue length ex-
ceeds a threshold. An AQ can set a virtual threshold based on
the A-Gap for ECN marking. When the A-Gap after a packet
arrives exceeds the threshold, this packet is marked with ECN.

Delay-based CC algorithms [34, 43]. They use queuing delay
as the network feedback. For example, Swift measures the
network delay and uses it to adjust traffic rates. However,
the physical queuing delay is not a good indicator to provide
network feedback when the network is shared by multiple enti-
ties, as discussed in Section 3.2. Analogous to a physical queue,
given the A-Gap A(k) for the k' packet, the time it takes for

1 Function Generate_NFB(ag, pkt):

2 if aq.gap > aq.limit then

3 aq.gap = aq.gap — pkt.size

4 Drop(pkt)

5 else

6 if aq.CC = ECN_type then

7 ‘ Apply_ECN_Marking_Actions(aq, pkt)
8 else if aq.CC = delay_type then

9 ‘ Apply_Update_Delay_Actions(aq, pkt)
10 end
11 end

an AQ to “drain” the A-Gap is A(k)/R, which is denoted as the
virtual queuing delay. When a packet passes through a switch,
the virtual queuing delay is calculated and piggybacked onto
the packet header. The AQ abstraction accumulates the virtual
queuing delay along the network path for a packet and uses
it as the network feedback for delay-based CC algorithms to
adjust the traffic rates.

4 APPLYING AUGMENTED QUEUES IN
PRACTICE

Applying AQs in data center networks requires interactions among
tenants, cloud operators, and switches. Figure 4 shows an architec-
ture for how to deploy AQs on switches to provide network services
for entities.

4.1 The Control Plane

The AQ Controller is managed by the cloud operator and it receives
AQ requests from tenants. After an AQ request is granted, the AQ
Controller configures the AQ and deploys it on the switch data
plane accordingly.

AQ requests. There are three types of information in a request for
an AQ: rate-related, CC-related, and position-related. Note that the
AQ Controller allows an entity to have multiple AQs deployed in
the network with multiple AQ requests.

o The rate-related information is to request the network band-
width for an AQ. There are two modes for bandwidth allocation.
In absolute mode, tenants specify their bandwidth require-
ments as absolute guarantees. In weighted mode, tenants spec-
ify their bandwidth requirements as network weights. Each
AQ has a network weight and different AQs proportionally
share the bandwidth of the network bottleneck link based on
the corresponding weights.

o The CC-related information specifies the congestion control
policy for an AQ. For example, if the applied congestion control
is DCTCP [4], the tenant needs to inform the AQ Controller
when the packets from this entity should be marked with ECN.

o The position-related information specifies the position profile,
which indicates where an entity expects its traffic rate to be
controlled. There are two positions in switches to deploy an
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Figure 4: Applying AQ abstraction to networks.

AQ: ingress pipeline and egress pipeline. An AQ deployed at
the ingress pipeline can control the rate of the traffic sent to
all the egress ports; an AQ deployed at the egress pipeline can
control the rate of the traffic from all the ingress ports. For
example, if a VM requires a bi-directional bandwidth guarantee,
it needs to send two AQ requests to the AQ Controller. One
request specifies the position profile at the ingress to guarantee
its outbound bandwidth; the other specifies the position profile
at the egress to guarantee its inbound bandwidth.

We assume that tenants are aware of how to set these three types
of information in an AQ request. In addition, the placement of AQ
is out of the scope of this paper and the positions of AQ in switches
are determined by the tenants.

AQ grants. After receiving an AQ request from a tenant, the AQ
controller determines whether to grant or decline it based on the
request information. If the bandwidth is allocated in absolute mode,
the AQ Controller grants the request when the network link has suf-
ficient bandwidth resources. Otherwise, it just declines the request.
If the bandwidth is allocated in weighted mode, the AQ Controller
determines (or updates) the specific bandwidth for each AQ based
on their weights sharing the network link. The AQ Controller gen-
erates a unique ID for an AQ when it is granted and it also returns
this ID to the tenant. The tenant needs to tag the AQ ID into the
header of packets. It is possible that an entity has AQs deployed at
both ingress and egress. Therefore, the tenant needs two fields in
the packet header for the two AQ IDs, respectively. The field is set to
a default value if there is no AQ deployed at either position. Either
the VM hypervisor in each end host or applications of tenants can
perform this tagging operation.

AQ deployments. The AQ Controller also generates an AQ con-
figuration for its deployment in switches based on a granted AQ
request. The fields of an AQ configuration are listed in Table 1. CC
fields in the AQ request can be directly used for an AQ. AQ ID is
uniquely generated for each AQ. AQ rate is the allocated rate R and
it can be either directly specified in absolute mode or calculated
with the network weights of entities. In order to compute the A-
Gap according to Algorithm 1 and control traffic rates according
to Algorithm 2, an AQ also needs extra fields, such as AQ limit,
AQ gap, and AQ last_time. Deploying AQs at ingress or egress
pipeline in switches can be either achieved through runtime opera-
tions provided by the control plane CLI [2], or through the recently
proposed dynamic register memory-sharing mechanisms in the
programmable data plane [66].

AQ request  AQ configuration

Bandwidth demand v
CC fields v
Position profile v
AQID

AQ rate

AQ limit

AQ gap

AQ last_time

<

SSENENENEN

Table 1: Fields in AQ request and AQ configuration.

4.2 The Data Plane

An AQ can be deployed at either the ingress or the egress pipeline of
the switch data planes, as shown in Figure 4. When a packet arrives
at a switch, the switch needs to match the AQ at both ingress and
egress because its AQ can be deployed at either position or both.

The switch first checks the AQ ID in the header of a packet for
the ingress pipeline. If the ID is a default value, it indicates that the
entity has no AQ deployed at the ingress and there is no additional
AQ operation needed for this packet. Otherwise, the switch looks
up the corresponding AQ based on the unique AQ ID. Each AQ
updates its A-Gap based on the AQ rate, the time interval between
the last and current packet, and the packet size on the arrival of
a packet, according to Algorithm 1. If the conditions for limiting
traffic rates or generating network feedback are triggered with the
A-Gap, the switch takes corresponding actions based on the applied
CC algorithms to inform the end hosts to adjust their traffic rates,
according to Algorithm 2. When the packet is not dropped at the
ingress, it is sent to the egress pipeline. The switch will then check
the AQ ID in the packet header for the egress pipeline again and
take the same steps as it did at the ingress.

5 EVALUATION

5.1 Experimental Setup

Platforms. We evaluate the augmented queue (AQ) abstraction
with a prototype implemented in both a software simulator and a
hardware testbed. The CloudLab platform [15] is used with 32GB
RAM and eight-core 2.0GHz CPUs servers. The simulation environ-
ment is established using the BMv2 software switches in the NS3
simulator with 10Gbps network link bandwidth and 10us propaga-
tion delay. The testbed environment is established with a Tofino
switch that has 32X 100Gbps ports. We can also configure it with
25 Gbps link speed. The topologies and divisions of the entities
used for simulation and testbed are illustrated in Figure 5(a) and
Figure 5(b), respectively.

Workloads. Our evaluation uses a web search workload trace that
consists of a diverse mix of small and large TCP flows arriving
at different times [4, 25]. The traffic pattern, i.e., the traffic matrix
among all hosts, is arbitrary because each host can communicate
with any other hosts with arbitrary traffic volume at any different
time, and each flow in the workload trace can be randomly gener-
ated by any source host and its traffic can be sent to any destination
host. In addition, entities can also generate long-lived TCP and
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Figure 5: Network topologies and entity divisions.

UDP flows. We apply five congestion control algorithms, including
CUBIC, New Reno, Illinois, DCTCP, and Swift, to adjust the rates
of TCP flows, respectively.

Baselines. We compare our AQ abstraction against both physical
queues and rate-limiting solutions. A physical queue (PQ) is inher-
ently equipped on the switch. There are two types of rate-limiting
solutions: 1) pre-determined rate limiter (PRL), i.e., the sending
rates of VMs and applications are pre-determined; 2) dynamic rate
limiter (DRL), i.e., the rates are dynamically adjusted based on the
traffic pattern. We use HTB [7] at end hosts as an example of the
first type; we use ElasticSwitch [46] as an example of the second
type and the rate adjustment interval is 15ms.

5.2 Network Performance of Applications

We will demonstrate that the AQ abstraction can allow distributed
applications to fully utilize their allocated bandwidth and it can
provide network isolation for different applications sharing a bot-
tleneck link with the NS3 simulator. Each application is regarded
as an entity.

AQ can fully utilize the allocated bandwidth. We evaluate
the performance of one distributed application under different ap-
proaches. This application can involve different numbers of VMs
to run the web search trace. All the generated flows share a net-
work bottleneck link. In Figure 6, the workload completion time
with different approaches is normalized to PQ under which the
network is fully utilized. We observe that AQ can achieve a very
close workload completion time as PQ, indicating that AQ can also
fully utilize the network bandwidth. However, the completion time
with both PRL and DRL keeps increasing with the number of VMs.
PRL evenly allocates the bottleneck bandwidth among VMs and
the allocation is fixed during the lifecycle of an entity. However,
because the traffic pattern is arbitrary and it changes over time, i.e.,
any source and destination pair can transmit flows with different
traffic volumes at different times, the bandwidth demand at runtime
inevitably mismatches the allocated bandwidth. Some VMs do not
have enough traffic to saturate the allocated bandwidth, but other
VMs still cannot use their spare bandwidth due to the fixed alloca-
tion, leading to an underutilized network with PRL. Although DRL
can dynamically adjust the bandwidth allocation, it requires a time
interval, e.g., 15 millisecond [46], for the adjustment. Because the
runtime bandwidth demand of each VM can change dramatically,
the allocated bandwidth cannot match its demand changes, leading
to a sub-optimal workload completion time.
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workload completion time under different mechanisms
of an entity under different when different entities have
numbers of VMs. different numbers of VMs.

AQ can isolate different applications. We evaluate the perfor-
mance of multiple applications sharing a bottleneck under different
approaches. Each application expects to share the network band-
width according to the allocated network weights, regardless of the
number of VMs, the number of TCP flows, and the protocol types
(i.e., TCP or UDP).

¢ Different numbers of VMs. In this experiment, we have two
entities, entity A and entity B. Entity A has one VM and entity
B can have one or multiple VMs. They both run the web search
trace and all the generated flows share a network bottleneck link.
The two entities have the same network weight and they expect
to fairly share the network bandwidth. PRL evenly distributes the
allocated bandwidth of an entity among its VMs. We define the
entity fairness as the ratio of the shorter workload completion time
between entity A and entity B to the longer one. The expected entity
fairness is 1. Figure 7 displays the entity fairness under different
approaches. We observe that the entity fairness of all the compared
baselines decreases with the increasing number of VMs in entity B.
When entity B has eight VMs, entity A’s completion time is only
0.16x and 0.21X entity B’s completion time using the PRL and DRL,
respectively. This is because the allocated bandwidth of entity B
cannot be always fully utilized when there are multiple VMs in
an entity. When using PQ, entity A’s completion time is around
7.2X entity B’s completion time due to the flow-level fair share. In
contrast, the entity fairness with AQ is always around 1, regardless
of the number of VMs.

¢ Different numbers of TCP flows. In this experiment, we
have two entities, entity A and entity B, and both of them have
one VM. Entity A generates one TCP flow and entity B generates
one or multiple TCP flows. Figure 8 shows the throughput of the
two entities using PQ and AQ, respectively. With PQ, the network
bandwidth shared between the two entities corresponds to their
number of flows. They can evenly share the network when they
both have one TCP flow. However, when entity B increases its
number of flows to 64, it can grab most of the bandwidth and starve
entity A. It implies that an entity can arbitrarily seize the network
bandwidth by generating more flows with PQ. In contrast, AQ
guarantees that the two entities can share the bandwidth according
to their network weights, regardless of their different number of
flows. For example, the two entities evenly share the bandwidth
when they have the same weight and their throughput is 1:2 when
their weights are 1:2.
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Figure 9: Throughput of TCP and UDP entities.

o Different protocol types (UDP vs. TCP). In this experiment,
we run several entities with the same network weights and they
expect to equally share the bottleneck link. Each entity has one
VM that generates either a TCP or a UDP flow. The sending rates
of each entity with UDP flows equal the link capacity. Figure 9(a)
displays the throughput of UDP and TCP entities with PQ. When
there are only TCP entities, they can fairly share the network band-
width. However, when a UDP entity begins injecting traffic into
the network, it almost grabs all the bandwidth and starves TCP
entities. In contrast, AQ can provide network bandwidth isolation
to entities. As shown in Figure 9(b), the throughput of each entity is
always around 1/n of the link capacity with n active entities sharing
the bottleneck link regardless of UDP or TCP entities. Specifically,
when there are four TCP entities and one UDP entity, the allocated
bandwidth of each entity is 2Gbps and their achieved bandwidth
saturation is over 95%. It indicates that AQ can provide network iso-
lation for entities and fully utilize the network bandwidth regardless
of protocol types.

5.3 Network Performance of CCs

We will demonstrate that the AQ abstraction can provide network
isolation for entities with different CC algorithms when their traffic
shares a bottleneck link using the NS3 simulator. All the entities
have the same network weights and they expect to fairly share the
network bandwidth.
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Figure 10: Entity fairness and total workload completion
time under different CC settings.

Workload completion time. In this experiment, we have two
entities, entity A and entity B. Each entity has four VMs and runs
the web search trace. Figure 10(a) shows the entity fairness be-
tween the two entities with different CC algorithms and different
approaches. The entity fairness with AQ, PRL, and DRL is very
close to 1, indicating that the two entities have almost the same
throughput. However, the entity fairness with PQ is just around
0.6. This is because entity A can grab most of the bandwidth when
it shares the network with entity B until it completes its workload.
The complete time of entity B is much longer than that of entity A.
Figure 10(b) compares the total completion time of the two entities.
AQ and PQ have the same completion time because they both can
fully utilize the network bandwidth. However, despite enforcing
entity fairness, both PRL and DRL have a significantly longer com-
pletion time due to the under-utilization of the network caused by
rate-limiting solutions, as discussed in Section 5.2.

Bandwidth sharing. In this experiment, we use two entities that
generate the same number of flows. With PQ, they can evenly share
the network when they apply the same CC algorithm. However,
their throughput has a disparity with different CC algorithms. As
listed in Table 2, the DCTCP traffic can aggressively seize the band-
width and starve traffic from other CC algorithms; the CUBIC traffic
can also starve the Swift traffic. In contrast, with AQ, the two enti-
ties can always achieve similar throughput, regardless of the CC
algorithms applied. They can still fairly share the bandwidth even
when they have different numbers of flows. We also use four enti-
ties for the evaluation. One of them generates a UDP flow and the
other three entities generate three TCP flows, respectively, with
different CC algorithms. With PQ, the UDP flow can grab a domi-
nant share of the bandwidth and its throughput is 8.9Gbps, but the
total throughput of the TCP flows is only 0.4Gbps. With AQ, all
four entities can have almost the same throughout, demonstrating
the fair sharing of the network.

5.4 Network Performance of VMs

We will demonstrate that AQ can provide a bi-directional abso-
lute bandwidth guarantee for VMs in the network with the Tofino
testbed. The network topology is illustrated in Figure 2. Four VMs
are connected to a switch and the network link capacity is 25Gbps.
VM A has a traffic profile with a 5Gbps outbound bandwidth and
a 5Gbps inbound bandwidth. It runs the web search trace and the
destinations are other three VMs. VMs B, C, and D also run the
web search trace and their destinations are VM A. In PRL, the rate



Congestion control PQ AQ
5 CUBIC+5 CUBIC 4.7Gbps+4.7Gbps 4.7Gbps+4.7Gbps
5 CUBIC+5 DCTCP 0.7Gbps+8.7Gbps ~ 4.6Gbps+4.7Gbps
5 NewReno+5 DCTCP  0.5Gbps+8.9Gbps 4.7Gbps+4.7Gbps
5 Illinois+5 DCTCP 1.7Gbps+7.7Gbps ~ 4.6Gbps+4.7Gbps
5 CUBIC+5 Swift 9.1Gbps+0.2Gbps 4.7Gbps+4.6Gbps
5 DCTCP+5 Swift 9.2Gbps+0.1Gbps ~ 4.7Gbps+4.6Gbps
10 DCTCP+5 NewReno  9.1Gbps+0.3Gbps 4.7Gbps+4.7Gbps
10 DCTCP+5 Swift 9.2Gbps+0.1Gbps 4.7Gbps+4.6Gbps
1 UDP+3 CUBIC 8.9Gbps+0.1Gbps 2.4Gbps+2.3Gbps

+3 DCTCP+3 Swift

+0.2Gbps+0.1Gbps

+2.4Gbps+2.2Gbps

Table 2: Throughput of entities with different CC settings.

Approaches  Outbound Rate Range  Inbound Rate Range
Ideal 5Gbps 5Gbps
PQ-testbed 23.1Gbps ~ 23.6Gbps  23.2Gbps ~ 23.6Gbps
PRL-testbed 4.8Gbps ~ 5.1Gbps 14.6Gbps ~ 15.3Gbps
DRL-testbed 3.1Gbps ~ 4.9Gbps 3.3Gbps ~ 4.8Gbps
AQ-testbed 4.9Gbps ~ 5.2Gbps 4.8Gbps ~ 5.2Gbps

AQ-simulator

4.8Gbps ~ 5.3Gbps

4.9Gbps ~ 5.1Gbps

Table 3: The outbound and inbound rates of VM A with dif-
ferent approaches.

limiters for the four VMs are 5Gbps. In DRL, the outbound and
inbound bandwidth allocated to VM A is 5Gbps; the bandwidth
allocation for VMs B, C, and D is dynamically adjusted.

Table 3 lists the range of the outbound rate and inbound rate of
VM A with different approaches. We observe that PQ is unable to
limit the outbound rate and inbound rate to the allocated bandwidth.
Both rates are much higher than the 5Gbps expected rate because
the rates can keep increasing until they reach the link capacity
and are restricted by congestion. The outbound rate with PRL is
around 5Gbps, but its inbound rate is around 15Gbps because three
VMs send traffic to VM A simultaneously. It violates the inbound
bandwidth required by the traffic profile. DRL can adjust the VM
traffic rates to attempt to satisfy the traffic profile, but the traffic
pattern can change dramatically. Therefore, both the outbound
and inbound rates can be less than 5Gbps when the real demand
is lower than the allocated rate. In contrast, AQ can guarantee
that both rates of VM A are around 5Gbps, indicating that it can
satisfy the traffic profile. We also measure the performance of AQ
on simulation using the same setup. The results are consistent with
those obtained in the testbed, confirming the fidelity of the AQ.

5.5 Other Factors

CC behaviors in AQ and PQ. We demonstrate with the testbed
that the AQ abstraction can preserve a CC’s traffic behaviors, such
as the throughput and queuing delay. Specifically, for an entity
using AQ with a specified bandwidth and a CC algorithm, its traffic
should behave as if it was running in a physical network exclusively
with the same network bandwidth. We measure the throughput
and the queuing delay distribution of an entity with AQ and PQ,
respectively. For AQ, its allocated bandwidth is 25Gbps in a 100Gbps
network; for PQ, we configure the link bandwidth to 25Gbps. Their
performance comparison under different CC algorithms is listed in
Table 4. We can observe that an entity can achieve almost the same

PQ AQ
Throughput 95% delay | Throughput 95% delay
CUBIC 23.6Gbps 698us 23.6Gbps 687us
New Reno 23.6Gbps 721us 23.6Gbps 712us
DCTCP 23.5Gbps 88us 23.6Gbps 86us

Table 4: Comparisons between AQ and PQ in terms of
throughput and queuing delay on the Tofino testbed.
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throughput under the PQ and AQ environments. For example, the
throughputs with CUBIC are both 23.6Gbps using PQ and AQ. In
addition, we use the virtual queuing delay (refer to Section 3.3.2)
as the queuing delay with AQ. We can observe that the virtual
queuing delay distribution is very close to the experienced queuing
delay distribution in a physical network. For example, the relative
difference between their 95th percentage is less than 2.3% under
the three applied CC algorithms.

Switch resource overhead. We demonstrate that our AQ abstrac-
tion can be feasibly deployed in the hardware switches. Figure 11
shows the resource usage of AQ on the switch data plane of our
Tofino testbed. We can observe that only a very small percentage
of each resource type is required on our testbed, e.g., 16.8% for
pipeline stages, 12.5% for MAUs, and 7.5% for PHV size. Under the
scale of production networks, existing mechanisms [51, 57] can
further shrink AQ’s resource usage. Figure 12 displays the switch
memory consumption with respect to the number of deployed AQs.
In our current implementation, we use four bytes for each AQ ID
to support millions of entities and three bytes for the AQ rate to
support a wide range of bandwidth allocations, e.g., IMB ~ 1TB.
Each AQ requires 15 bytes in total based on the fields listed in Table
1. We can see that today’s programmable switches, which usually
have tens of MB of memory, can comfortably support millions of
concurrent AQs.

6 DISCUSSIONS

Work conservation. This paper aims to provide precise band-
width guarantees for different traffic constituents. Referring to
Section 2.3, the inbound and outbound bandwidth guarantees for
VMs are contradictory to work conservation in the network. In
order to accommodate scenarios that require work conservation,
one possible mechanism is to invoke AQ only when the physical
queue starts to build up in switches. When the physical queue
is empty, the switch can bypass AQ to allow traffic constituents
to grab higher network bandwidth than their allocations for bet-
ter network utilization; when there is queuing in physical queues,



AQ is invoked to limit the traffic rate and reduce traffic interfer-
ence. Another possible mechanism is to dynamically adjust the
allocated bandwidth of traffic constituents with the AQ abstraction.
For example, network providers can measure their arrival rates in
the network and then allow AQ to periodically recompute their
allocated bandwidth according to similar rate control algorithms
proposed in EyeQ [29] and Seawall [53]. When there is available
bandwidth, this mechanism can increase the allocated bandwidth
of entities to better utilize the network. It will be interesting future
work to achieve work conservation with other mechanisms based
on the AQ abstraction.

AQ limit configurations. The AQ limit of each entity should
absorb its traffic burst and allow its traffic to achieve the allocated
bandwidth. A possible configuration mechanism is to set the AQ
limit as the physical queue (PQ) limit. It allows entities to configure
their CC fields in the same way as the settings for PQ. However,
because the total AQ limit of all entities is greater than the PQ limit,
there would be situations in which packets are scheduled in AQs but
dropped at PQs, leading to inaccurate network feedback generated
in Algorithm 2. An alternative to setting the AQ limits is to divide
the PQ limit proportionally according to the allocated bandwidth.
It ensures that the total number of packets queued in the AQs of all
entities is no greater than that queued in the physical queue when
the network is congested. In this way, the overall traffic behaviors of
AQs can be consistent with the physical queue behaviors. However,
low allocated bandwidth can lead to a small AQ limit, which might
hinder the entity to achieve its allocated bandwidth due to excess
packet drops. It might require network providers to determine
the minimum AQ limit under which the packets are not overly
dropped and the allocated bandwidth is achievable. This minimum
AQ limit is empirical-driven and it depends on multiple factors,
such as CC algorithms and the allocated bandwidth. We will take
the exploration of setting AQ limits as our future work.

7 RELATED WORK

Rate-limiting based solutions. Many rate-limiting solutions have
been proposed to control the traffic rate and can be divided into
two categories: pre-determined rate limiters and dynamic rate lim-
iters. Pre-determined rate limiters [7, 35, 48] limit the outbound
traffic rate of VMs according to a fixed rate configuration, but
they cannot accommodate arbitrary traffic patterns, especially for
distributed applications that involve multiple VM. Dynamic rate
limiters [8, 21, 28, 29, 36, 45-47, 53, 61] can periodically adjust the
rate configuration for each VM. However, the inbound bandwidth
specification of a VM can be either under-utilized or violated de-
pending on the traffic pattern among VMs. Moreover, they cannot
provide precise bandwidth guarantees for the transport layer. In
contrast, AQ is an in-network solution and it can provide precise
bandwidth guarantees for the application layer, the transport layer,
and the link layer.

Fair-queuing based solutions. Some existing fair queuing mech-
anisms can mitigate traffic interference among traffic constituents
and limit the traffic rate in case of congestion. Conventional fair
queuing algorithms, such as WFQ [9], DRR [54] and Stochastic
Fair Queuing [42], require per-flow queue. However, the limited
number of physical queues in today’s commodity switches hinders

their deployment. Several approximate solutions, such as PIFO [56],
SP-PIFO [3], AIFO [64], and AFO [52], are proposed to approximate
fair queuing with one or a few physical queues. They rely on net-
work feedback for traffic control. However, they cannot provide
inbound bandwidth guarantees for VMs because they cannot bound
the traffic rate when there is no network congestion. Furthermore,
they are unable to generate different CC signals for different CC
algorithms simultaneously at the transport layer. In contrast, AQ is
scalable to today’s data center with only one physical queue and
supports precise bandwidth guarantees for the application layer,
the transport layer, and the link layer.

Congestion Control algorithms. End-to-end CC algorithms [4,
17, 22, 34, 40, 43, 67] allow fair sharing of the network, but they
cannot support flexible bandwidth guarantees. Moreover, they are
unable to control the traffic rate when there is no congestion in
the network. In contrast, AQ can support flexible bandwidth guar-
antees and its traffic rate control is independent of the physical
queue length. It focuses on supporting the coexistence of multi-
ple CC algorithms, rather than proposing new ones. AQ can sup-
port different types of CC algorithms, such as drop-based CC algo-
rithms [17, 22, 40], ECN-based CC algorithms [4, 67], and Delay-
based CC algorithms [34, 43]. Other CC algorithms, such as TCP
BBR [12], HPCC [39] and HULL [5], can also accommodate to the
AQ abstraction. TCP BBR relies on both the arrival rate and the
delay to conduct the rate adjustments; our AQ abstraction is capable
of providing such information in the network. HULL and HPCC
leverage bandwidth headroom to reduce the latency for network
applications; AQ can also set aside an amount of bandwidth in
the network as the bandwidth headroom. Several virtualized con-
gestion control solutions, such as AC/DC TCP [24] and vCC [13],
can mitigate the traffic interference of different CC algorithms.
However, they focus on introducing a new unified DCTCP-like
congestion control and forcing all other congestion control algo-
rithms to perform the same. In contrast, AQ allows different CC
algorithms to perform differently according to different types of
network feedback signals.

8 CONCLUSION

In this paper, we analyze the fundamental limitations of physical
queues for data center network sharing. We then propose Aug-
mented Queue (AQ), an in-network abstraction to scalably provide
precise bandwidth guarantees for different traffic constituents. AQ
allows traffic constituents to adjust their traffic rates only based
on their own traffic, regardless of the applied protocols, the CC
algorithms, and the traffic patterns. We prototype AQ with pro-
grammable switches and demonstrate that it can provide precise
bandwidth guarantees and scale to today’s data centers. We be-
lieve that AQ’s underlying concept, which relieves the reliance on
physical queues, has significant potential for data center network
sharing and could serve as a guide for future network development.
This work does not raise any ethical issues.
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