
Unleashing SmartNIC Packet Processing Performance in P4
Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu

†
, Songyuan Sui, Khalid Manaa

‡
, Omer Shabtai

‡

Yonatan Piasetzky
‡
, Matty Kadosh

‡
, Arvind Krishnamurthy

§
, T. S. Eugene Ng, Ang Chen

Rice University,
†
Meta,

‡
Nvidia,

§
University of Washington

ABSTRACT
SmartNICs are on the rise as a packet processing platform, with the

trend towards a uniform P4 programming model. However, unleash-

ing SmartNIC packet processing performance in P4 is a formidable

task. Traditional SmartNIC optimizations rely on low-level program

tuning, but P4 abstractions operate at one level above. At the same

time, today’s P4 optimizations primarily focus on resource packing

rather than performance tuning. We develop Pipeleon, an auto-

mated performance optimization framework for P4 programmable

SmartNICs. We introduce techniques that are tailored to the perfor-

mance characteristics of SmartNICs, and further leverage dynamic

workload patterns for profile-guided optimization. Pipeleon pin-

points program hotspots at the P4 level and computes runtime

optimization plans to specialize the program layout based on the

latest profile. We have prototyped Pipeleon and applied it to opti-

mize two popular P4 SmartNICs—Nvidia BlueField2 and Netronome

Agilio CX—as well as a software SmartNIC emulator extended based

on BMv2. Our results show that Pipeleon significantly improves

SmartNIC packet processing performance in realistic scenarios.

CCS CONCEPTS
• Networks→ Programmable networks; • Hardware→ Net-
working hardware; • Software and its engineering→ Domain
specific languages; Just-in-time compilers.

KEYWORDS
SmartNICs; P4; Runtime Program Optimization

ACM Reference Format:
Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu

†
, Songyuan Sui, Khalid Manaa

‡
,

Omer Shabtai
‡
, Yonatan Piasetzky

‡
, Matty Kadosh

‡
, Arvind Krishnamurthy

§
,

T. S. Eugene Ng, Ang Chen. 2023. Unleashing SmartNIC Packet Processing

Performance in P4. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM
’23), September 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3603269.3604882

1 INTRODUCTION
SmartNICs have gained popularity in cloud data centers, with

various vendors vying for the market (e.g., Nvidia BlueField [9],

Netronome Agilio [8], Intel IPUs [7], AMD Pensando [1]). By of-

floading a broad range of tasks [26, 38, 43, 53, 65] from host CPUs,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00

https://doi.org/10.1145/3603269.3604882

SmartNICs promise to deliver more efficient packet processing and

reduce the total cost of ownership (TCO). As such, they have al-

ready gained a significant foothold in the industry [2, 3, 16, 18, 26],

with programmability extending from the SmartNIC software (e.g.,
SoC-based CPU cores) to the hardware (e.g., on-NIC packet process-

ing ASICs). Furthermore, requirements of interoperability and open

standards have moved SmartNICs toward a uniform programming

model using P4 as the de-facto language [1, 7, 8, 10, 37].

However, it is well-known that SmartNIC performance requires

intricate tuning [37, 38, 49]. Historically, this was done in a target-

specific manner by the individual SmartNIC compiler or developer,

with various low-level programming optimizations (e.g., C opti-

mizations for Nvidia BlueField and microC for Netronome Agilio).

Lifting SmartNIC programming models to a higher level in P4 is a

promising start, but the ease of programming and a standardized

model does not relieve the burden of extracting performance. This is

because existing P4 compilers [27, 34, 36, 54] focus on switch ASICs,

where resource constraints are the first-order concern, and perfor-

mance guarantees come almost “for free” as long as the packed

program fits inside the device. In other words, the pipelined nature

of switch ASICs ensures that once P4 tables satisfy the resource

constraints, packet processing operates at linespeed. SmartNICs,

however, are a very different target from switch ASICs.

SmartNICs usually opt for a different processing model, where

a packet is assigned to a particular processing engine in a run-to-

completion manner. For instance, Nvidia BlueField uses a “disag-

gregated RMT” architecture [21, 63], where a set of ASIC packet
engines implement header computation, and they fetch match/ac-

tion (MA) entries from SRAM over a memory bus. On the other

hand, Netronome Agilio uses a set of SoC-based CPU cores for packet
processing, and entries are likewise located in a farther memory

hierarchy. Henceforth, we call these packet processing engines

ASIC and CPU cores, respectively. For multicore SmartNICs, pack-

ets may experience variable latency depending on the P4 program

structure, such as the number of MA tables and their match types.

Furthermore, packets traversing different execution paths of the

same program would experience variable latency. Thus, SmartNIC

performance profiles put a significant burden on the optimizing

framework for efficient P4 implementations, and such a framework

is notably missing from today’s landscape.

Pipeleon bridges this gap by contributing an automated Smart-

NIC optimization framework with profile-guided, performance-

oriented P4 optimizations. It adapts the P4 program layout on a

multicore SmartNIC based on the traffic patterns and table entries

at runtime, which we call “runtime profiles”. These profiles play

a crucial role in SmartNIC optimization as they capture the evolv-

ing nature of how packets interact with P4 programs, presenting

new opportunities for dynamic performance tuning. In a similar

vein, Pipeleon is also wary of runtime profile changes—e.g., a new
tenant creation may result in table entry updates, such as access

https://doi.org/10.1145/3603269.3604882
https://doi.org/10.1145/3603269.3604882

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

control policies and routing rules, and this may reduce the effective-

ness of the current optimization. Therefore, Pipeleon continuously

adapts and optimizes the program to accommodate dynamic profile

changes over time.

Pipeleon operates at the P4 level, taking a P4 program as input

and performing P4-level transformations to realize more efficient

SmartNIC implementations. To adapt the program layout at runtime,

Pipeleon leverages the runtime reconfigurability in two types of

SmartNIC deployment scenarios. (1) Runtime programmable Smart-

NICs: SmartNIC ASIC cores are becoming reconfigurable at runtime

(e.g., the enhanced dRMT architecture [63], which supports live

runtime reconfiguration, has been implemented in Nvidia BlueField

ASIC cores), and this enables on-the-fly program layout updates

with zero downtime. (2) Disaggregated SmartNICs: A trending de-

ployment model (e.g., the DASH project led by Microsoft [5, 18])

is to house a rack of SmartNICs that are disaggregated from the

machines that they serve. The SmartNIC rack can process traffic

flexibly from a varying set of end hosts at runtime, which enables

seamless runtime reconfiguration by draining traffic to neighboring

SmartNICs temporarily.

The high-level challenges that Pipeleon tackles are to determine

how and where to optimize the P4 program for SmartNICs. In terms

of how to optimize SmartNIC programs, Pipeleon needs to go be-

yond P4 optimizations on resource consumption [17, 31, 36, 62]

to performance-oriented optimizations. This further needs to be

guided by an approximate performance cost model of P4 programs

on SmartNICs. Drawing inspiration from priorwork, Pipeleon devel-
ops three P4-level performance optimizations to tune the program

layout for better performance. Table reordering saves processing

cycles by dropping packets as early as possible in the program

structure. Table caching creates faster paths for packets to skip

complex table matches (e.g., ternary and range). Table merging im-

proves memory access efficiency by composing small tables into

bigger ones to reduce memory lookups, which are key performance

bottlenecks. The three customized techniques are broadly applica-

ble to SmartNICs with ASIC or CPU processing cores—e.g., Nvidia
BlueField and Netronome Agilio.

The next challenge is to determinewhere to optimize the program

and which optimizations to apply. Different optimization strategies

will generate distinct performance benefits and introduce different

resource costs. Pipeleon needs to search for the best strategy that

maximizes the performance gain while staying within desired re-

source limits. Searching over the whole program without priority

will result in long optimization times and potentially miss useful

profile changes. Pipeleon addresses the problem by prioritizing

the hotspots that contribute the most to a program’s inefficiency.

Concretely, Pipeleon partitions a P4 program into smaller code

snippets called pipelets. It estimates the cost of each pipelet with

the approximate cost model based on runtime profiles, selects the

top-𝑘 “hot” pipelets for timely optimization, and uses a heuristic

search to identify the best optimizations across pipelets.

We have implemented a prototype of Pipeleon1 and applied it to
BlueField2 and Agilio CX as well as a software emulator extended

based on BMv2. Our results show that Pipeleon can finish the

runtime optimization search within one minute for the majority of

1Pipeleon is available at https://github.com/jiarong0907/Pipeleon.

Host CPUs

Homogeneous CPU cores
e.g., Agilio CX

Host CPUsProgrammable

CPU cores ASIC cores

CPU cores

Heterogeneous ASIC and CPU cores
e.g., BlueField2

…

Stage 1 Stage 2 Stage 3 Stage n

Pkt in Pkt out

(a) Stage-based P4 programmable pipeline

(b) Multicore-based P4 programmable SmartNICs

Run-to-completion

RX/TX ports RX/TX ports

Figure 1: P4 is initially designed for programming stage-
based switch ASICs, but multicore SmartNICs are very dif-
ferent and process packets in a run-to-completion style.

programs, and its optimizations significantly improve the SmartNIC

P4 performance in various use cases by up to 5x. This work does

not raise any ethical issues.

2 OVERVIEW
2.1 Unleashing SmartNIC Performance
SmartNICs are a promising platform for efficient packet processing,

but extracting performance is far from easy [23, 38, 39, 43, 49, 51, 53].

SmartNIC toolchains (e.g., programming languages and compilers)

vary across vendors, often with opaque, low-level optimizations,

and require manual tuning based on the traffic workloads. Code

reuse and portability across devices are likewise difficult. Recently,

vendors are embracing P4 as a uniform programming model for

SmartNICs—Nvidia BlueField [9], Netronome Agilio [8], AMD Pen-

sando [1], and Intel IPUs [7] are programmed in P4, and SmartNIC

architecture models (e.g., Portable NIC Architecture) [13] are also

adopting P4 as the de-facto language.

While P4 simplifies and standardizes SmartNIC programming,

it does not relieve the challenge of unleashing performance. Op-

erating at a higher abstraction, P4 programs obscure low-level

performance-tuning opportunities, necessitating the need for inno-

vative P4-level optimizations. This, in turn, introduces new demands

on the P4 compilers to effectively perform program transformations

for better performance. Yet, due to their origin as a switch program-

ming language, today’s P4 compilers excel in resource packing onto

constrained ASICs [27, 34, 36, 54] but not performance-oriented

optimizations. The implicit assumption is that once MA tables fit

inside the device, performance is deterministic and guaranteed to

be line rate. For SmartNICs, however, their architecture commonly

takes a multicore processing model—including SoC CPU cores in

software (e.g., micro-engines on Netronome Agilio) and ASIC cores

in hardware (e.g., dRMT ASICs on Nvidia BlueField). As Figure 1

shows, packets are steered to one of the SmartNIC cores—ASIC or

CPU—and processed in a run-to-completion model. Both types of

cores are P4 programmable, and they operate at different speeds.

https://github.com/jiarong0907/Pipeleon

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

…

Reorder

ACL-
Cloud

ACL-
Tenant

ACL-
Subnet

ACL-
VM

Routing

0 8 16 24 32 40 48 56 64 72
Time(s)

70

75

80

85

90

95

100

Th
ro

ug
hp

ut
(G

bp
s)

 Dropping
rate change

Dynamic ACL order
Static ACL order

Figure 2: Profile-guided optimizations adapt to traffic profile
changes and achieve higher performance on BlueField2.

Packet performance is therefore subject to significant variation

on SmartNICs, across programs, traffic types, and table entries;

linespeed processing is not an automatic guarantee. For instance,

in dRMT SmartNICs, every MA table incurs additional memory

lookup from the ASIC cores to the disaggregated memory bank.

Packets traversing a different amount of tables, even for the same

P4 program, will vary in their latency characteristics. Furthermore,

many workload characteristics (e.g., traffic types and table entries)

are not known at compile time. Before deployment, the compiler

only has partial knowledge: the program itself, but not the workload

profiles. Thus, even the best optimizations at compile time are

constrained by this incomplete information.

2.2 The Promise of Runtime PGO
Profile-Guided Optimization (PGO) has proven useful for other

languages [19, 24, 40, 42, 45, 46, 61], enabling better performance

optimizations by leveraging knowledge about the input. However,

such techniques have not caught up to P4 compilers except for the

traditional goal of resource packing [62]. To demonstrate its poten-

tial benefits, we conduct a set of motivating experiments. Figure 2

depicts the layout of a P4 programwhich starts with multiple access

control list (ACL) tables, then a few regular packet processing tables

(not shown), and ends with a routing table. We apply an optimiza-

tion from Pipeleon to this program by reordering the ACL tables

based on their packet dropping rates—which depend on the run-

time profiles and are unknown at compile time. We then measure

the respective performance of the optimized implementation on

an Nvidia BlueField2 SmartNIC. As Figure 2 shows, traffic pattern

changes render any static table order ineffective in providing good

performance. In contrast, by reordering these tables based on the

current traffic profiles, profile-guided optimizations can quickly

bring the performance up to the line rate after workload changes.

2.3 Pipeleon Overview
Pipeleon2 is the first automated profile-guided optimization frame-

work for SmartNICs, aiming to unleash the full potential of what

2Pipeleon refers to a pipeline that is capable of adapting to traffic changes, much like

a chameleon adapting to its surrounding environments.

SmartNICs

Pipeleon runtime

Profiling

Top-k pipelets

Optimization

Instrument

Pipeleon

…

Lower-level compilers

Figure 3: The workflow of the Pipeleon system.

we see in the above sneak preview. Pipeleon takes a P4 program

as input and transforms it into more efficient implementations at

the source code level; thus, the optimizations are independent of

the specific SmartNIC targets. We address two unique challenges

in the design of Pipeleon.
How: Performance-oriented P4 optimizations. First, we need
a new set of optimization techniques targeting P4 program perfor-

mance. To tackle this challenge, we first develop a cost model to

estimate the performance of P4 programs running on SmartNICs,

using a target-independent methodology. The model further moti-

vates customizing a set of performance-oriented optimization tech-

niques, including table reordering, table caching, and table merging,

which can be further extended to heterogeneous targets such as

ASICs and CPU cores on BlueField, through pipeline partitioning

and packet migration.

Where: Best optimization strategy search. These optimizations

produce different performance gains with different resource over-

heads. Thus, the second challenge Pipeleon needs to address is to

find the best optimization strategy within specified resource con-

straints, while ensuring that the runtime optimizations are timely

enough for dynamic profile changes. We solve this problem by par-

titioning the program into smaller code snippets called pipelets.

Given the runtime profiles and the cost model, Pipeleon selects the

top-𝑘 optimization-worthy pipelets and uses efficient heuristics to

find the best optimization strategy.

Pipeleon workflow. Figure 3 shows the workflow of the system.

Pipeleon optimizes SmartNIC programs at the P4 level, functioning

as an independent layer that can be easily integrated with existing

SmartNIC compilers. It instruments the input program with P4

counters to enable runtime profiling. Pipeleon dynamically collects

profiles at runtime and uses them to detect the top-𝑘 optimization-

worthy pipelets. It then optimizes these pipelets with the proposed

domain-specific optimizations, producing an optimized P4 program

with a better layout on the SmartNIC to be consumed by the target-

specific P4 compiler toolchains. Pipeleon constantly monitors the

profile; when it varies, a new round of optimizationwill be triggered.

The optimization process is automated, requiring minimal manual

intervention from network operators. Pipeleon ensures the same

program management APIs (e.g., entry insertion) by mapping the

API calls to the original program to the optimized version.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

3 PERFORMANCE-ORIENTED OPTIMIZATION
In this section, we construct an approximate SmartNIC cost model

and propose a set of domain-specific techniques for optimizing the

performance of P4 programs.

3.1 Approximate P4 Performance Models
To develop performance-oriented optimizations, we need to un-

derstand how P4 programs exhibit different performance charac-

teristics on SmartNIC platforms, while using a target-independent

methodology whenever possible. To the best of our knowledge, this

represents the first study that relates P4 program structures to their

performance profiles. We demonstrate the feasibility of construct-

ing an approximate P4 performance model for a widely available

SmartNIC—Nvidia BlueField2. Using concrete performance bench-

marks as a starting point, our method works by interpolating how

MA program structures affect performance. We further validate the

model with hardware measurements by applying it to a range of

programs for predictive analysis. The model will serve as a guide

for the compiler to perform P4-level transformations in search of

high performance.

To construct a target-independent model, we view a P4 program

as a directed acyclic graph (DAG) where nodes are MA tables or

conditional branches and edges represent packet dataflow, as il-

lustrated in Figure 4. Further, any packet traverses exactly one

path on the graph from the root to the sink, due to the run-to-

completion model of SmartNIC packet processing. The execution

path also determines packet latency. An execution path 𝜋 is defined

as < 𝑣0, 𝑒0, 𝑣1, ..., 𝑒𝑘−1, 𝑣𝑘 >, where 𝑣𝑖 and 𝑒𝑖 represents nodes and

edges on the path, respectively. The path latency 𝐿(𝜋) includes the

cost of each node on the path. 𝑃 (𝜋) is the cumulative product of

each edge probability on the path. The expected program latency,

denoted as 𝐿(𝐺), is the latency sum of each execution path, weighted

by the path probability, as shown in Equation 1.

𝐿(𝐺) =
∑︁

𝜋∈𝑃𝑎𝑡ℎ𝑠(𝐺)

𝑃 (𝜋)𝐿(𝜋) (1)

𝑃 (𝜋) = 𝑃 (𝑒0)𝑃 (𝑒1 |𝑒0)...𝑃 (𝑒𝑘−1 |𝑒𝑘−2 ...𝑒0) (2a)

𝐿(𝜋) =
𝑘∑︁
𝑖=0

𝐿(𝑣𝑖) (2b)

Implication #1: 𝐿(𝜋) is the accumulated latency across 𝑘 nodes on
the path. We can optimize it by shortening the path to decrease 𝑘 or
implementing 𝑣𝑖 more efficiently to decrease 𝐿(𝑣𝑖).

A node 𝑣𝑖 can be an MA table or a conditional branch. The

cost of a table includes key match and action execution. A key

match produces several hashes and memory accesses (dominate

the latency), and the numbers depend on the match types and table

entries. Specifically, an “exact” match is a basic operation that can

be implemented as a hash table. It completes the key match with

one hash to compute an index and one memory access to read the

data (𝑚 = 1). The “longest prefix match” (LPM) and “ternary match”

are usually implemented using multiple hash tables, which could

involve more than one memory access (𝑚 > 1). The action cost

0.7

1.0

If-else branch Switch-case table

Action primitivess

r

D

E

B

C

A

F

1.0

1.0 1.0

1.0

0.3

0.20.8

0.4 0.6 Key match

ipv4.ttl = ipv4.ttl - 1;
tcp.dport = 100;

ipv4.dip: ternary;
tcp.sport: exact;

Edge probability

Figure 4: Pipeleon models a P4 program as a directed acyclic
graph (DAG). A MA table node includes key match and ac-
tion primitives. Each edge is associated with a probability
representing the portion of traffic going through it.

Symbol Description
𝐺 The directed acyclic graph of a P4 program

𝜋 An end-to-end execution path in a P4 program

𝐿(𝑜𝑏 𝑗) The latency of the input object

𝑃 (𝑜𝑏 𝑗) The probability of the input object

𝑚𝑣𝑖 Number of memory accesses for the key match of table 𝑣𝑖

𝑛𝑎 Number of primitives in action 𝑎

𝐿𝑚𝑎𝑡 The constant latency of one memory access (one exact match)

𝐿𝑎𝑐𝑡 The constant latency of one action primitive

Table 1: The main symbols used in the cost model.

is the sum of each action cost weighted by its probability.
3
For a

specific action, its cost is proportional to the number of associated

primitives. Most conditional branches are simple and require no

memory access, so we ignore their cost. Equations 4a and 4b repre-

sent this approximate model, where parameters can be extracted

via benchmarking.

𝐿(𝑣𝑖) = 𝐿𝑚𝑎𝑡𝑐ℎ(𝑣𝑖) + 𝐿𝑎𝑐𝑡𝑖𝑜𝑛(𝑣𝑖), 𝑣𝑖 is a table (3)

𝐿𝑚𝑎𝑡𝑐ℎ(𝑣𝑖) =𝑚𝑣𝑖 · 𝐿𝑚𝑎𝑡 (4a)

𝐿𝑎𝑐𝑡𝑖𝑜𝑛(𝑣𝑖) =
∑︁
𝑎∈𝑣𝑖

𝑃 (𝑎) · 𝑛𝑎 · 𝐿𝑎𝑐𝑡 (4b)

Implication #2: The value of 𝑛𝑎 is fixed by the needed operations
for packet processing, so𝑚𝑣𝑖 affords more potential for optimization.
Optimizing𝑚𝑣𝑖 requires implementing the key match more efficiently.

Methodology and results. In the above model, the probability

𝑃 (𝑒𝑖 |...) and 𝑃 (𝑎) can be calculated by measuring the traffic going

through each edge/action with P4 counters, and 𝑛𝑎 can be counted

from the source code. Thus, unknown parameters are 𝐿𝑚𝑎𝑡 , 𝐿𝑎𝑐𝑡 ,

and𝑚𝑣𝑖 , which we approximate by profiling a range of programs

with different sizes, match types, and action primitives. For each

program, we measure its maximum throughput by sending traffic

using TRex [15]. We use its reciprocal as the approximate average

latency, since the cost model estimates relative latency differences

across optimization options, instead of their absolute values. We

3
A switch-case table transits to different next tables based on the executed action, so

it is located on multiple execution paths. In this case, only the cost of actions leading

to the current path should be included.

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

10 20 30 40
Exact tables

0.00

0.25

0.50

0.75

1.00

1.25

No
rm

. T
hr

ou
gh

pu
t

Real measurement
Cost model

(a) Program length

2 4 6 8
Action primitives

0.00

0.25

0.50

0.75

1.00

1.25

No
rm

. T
hr

ou
gh

pu
t

Real measurement
Cost model

(b) Action primitives

10 12 14 16
LPM tables

0.00

0.25

0.50

0.75

1.00

1.25

No
rm

. T
hr

ou
gh

pu
t

Real measurement
Cost model

(c) Match type: LPM

10 12 14 16
Ternary tables

0.00

0.25

0.50

0.75

1.00

1.25
No

rm
. T

hr
ou

gh
pu

t

Real measurement
Cost model

(d) Match type: Ternary

Figure 5: Performance measured on BlueField2 vs. perfor-
mance predicted by the cost model. (a) compares different
numbers of exact tables in a program, each with two actions.
(b) validates the impact of action primitives using programs
with 20 exact tables. (c) and (d) test different amounts of LPM
and ternary tables with fixed actions. All data are normalized
to the corresponding hardware measurement.

then extrapolate 𝐿𝑚𝑎𝑡 and 𝐿𝑎𝑐𝑡 with linear regression, using the

performance results obtained with programs composed of exact

match tables as a baseline. This gives us the latency of 𝑥 exact

matches in the format of𝑌1 = 𝐴1𝑥+𝐵1 and the latency of𝑦 actions in

the format of𝑌2 = 𝐴2𝑦+𝐵2, where𝐴1,𝐴2 corresponds to 𝐿𝑚𝑎𝑡 , 𝐿𝑎𝑐𝑡
in Equations 4a and 4b, respectively, and 𝐵1, 𝐵2 are constants. The

value of𝑚 for LPM and ternary matches is related to the number of

different prefixes and masks in table entries. We use three different

prefixes for LPM tables and five different masks for ternary tables in

the measurement. We then estimate𝑚 by normalizing the observed

packet performance using the performance of exact match tables

as the baseline.

We apply this methodology to Nvidia BlueField2, with a bench-

marking suite containing more than 300 P4 programs to obtain a

stable model. We further validate the obtained model by measuring

its ability to estimate new program scenarios. Figure 5 shows the

performance difference between estimated program costs using our

model and that obtained by hardware measurements with 16 differ-

ent scenarios. Our cost model estimates the hardware performance

within a 5% deviation on average compared to the actual measure-

ment. Nvidia engineers have also confirmed that the predicted

numbers lie in an expected range from the hardware perspective.

Although this approximate model only estimates performance dif-

ferences, without having a “whitebox” view of all SmartNIC details,

it is able to guide Pipeleon to find optimizations that achieve line

rate in later experiments. Moreover, since the benchmarking strat-

egy does not require having vendor details, it can be applied to

other SmartNICs and program features as well.

3.2 P4 Performance Optimizations
Driven by the cost model, we have customized three techniques

that cater to the unique demands of P4 performance optimization

on multicore SmartNICs. These techniques transform the code

into more efficient implementations while preserving the program

semantics by table dependency analysis [34].

3.2.1 Table reordering. Continuing our earlier example in §2.2,

we describe in more detail the table reordering optimization. Unlike

switch ASICs (e.g., Intel Tofino [6]) where dropped packets are sim-

ply tagged with a bit and only discarded at the end of the pipeline,

SmartNICs are not constrained by this pipelined processing. When-

ever we can make a decision to drop a packet, the corresponding

execution halts, and the ASIC/CPU core fetches the next packet.

Thus, when SmartNIC programs drop packets, it is beneficial to

drop them as early as possible. This shortens the execution path and

decreases 𝐿(𝜋) in the cost model for dropped packets. Therefore,

whenever possible, Pipeleon promotes tables with higher dropping

rates to earlier parts of the program.

Consider a pipeline with multiple ACL tables, where a packet

is accepted only if none of the tables denies the packet. At any

given time, these tables could produce different packet-dropping

rates due to the ACL rules and traffic composition. In this case,

Pipeleon will shuffle their order by promoting ACL tables with

higher dropping rates to earlier places. In addition to reordering

ACL tables, table reordering can also enable more opportunities

for other optimizations. For example, changing the order from

𝑇𝐴 → 𝑇𝐵 → 𝑇𝐶 to 𝑇𝐴 → 𝑇𝐶 → 𝑇𝐵 makes it possible to cache or

merge 𝑇𝐴 and 𝑇𝐶 , as described later.

Original pipeline

A B C BC A

Reordered pipeline

Dropped traffic

Optimization considerations. Table reordering does not incur

resource overhead. It alters the table sequence when there are

no dependencies across these tables (e.g., the ACL tables above).

Nevertheless, this may affect the applicability of other optimizations.

In addition, the dropping rate will vary with the actual traffic and

table entries; Pipeleon will reorder tables accordingly at runtime.

3.2.2 Table caching. Another performance optimization is to

realize complex table matches in a more efficient way. Pipeleon
accomplishes this by creating flow caches, which are implemented

as fast, exact-match tables. These simpler tables record the match

result of the more complex tables (e.g., LPM or ternary tables) in

the original program and reuse it for following packets in the same

flow. This decreases 𝐿(𝜋) by reducing the path length when caching

multiple tables, and by implementing the keymatchmore efficiently

using exact matches.

While inspired by the “flow cache” idea used in today’s sys-

tems [47, 66], Pipeleon enhances the cache in several aspects. First,

existing designs use one cache for the entire program, leading to

the cache key cross-product problem. That is, 𝑛 header fields could

produce up to 𝑆1 · 𝑆2 ... · 𝑆𝑛 cache entries, where 𝑆𝑖 is the number

of different values of the 𝑖-th field. Moreover, this exacerbates the

cache invalidation problem because an update in any of the original

tables will invalidate the entire cache, resulting in a low cache hit

rate. Pipeleon addresses this problem by allowing an adjustable

number of caches—it can cache the whole program with one cache

if that achieves the best performance; it may also create multiple

smaller caches, each covering different program areas. The figure

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

below shows a scenario where two smaller caches produce better

performance than a single cache for the entire program. This can

happen when table C’s match keys have a large value space, which

will amplify the cross-product problem, or when it has frequent en-

try updates, which will lead to frequent cache invalidation. The best

caching strategy varies for different programs and runtime profiles.

Therefore, Pipeleon computes the optimal solution at runtime.

A B C D

Cache DCache A+B
Hit Hit

MissMiss

Optimization considerations. The performance of a cache is di-

rectly influenced by its hit rate, which is very challenging to predict

in advance. At runtime, the cache hit rate is affected by many fac-

tors, such as traffic locality, cache keys, and cache entries. Therefore,

runtime adaptation is indispensable for maintaining good cache

performance. When Pipeleon computes a caching optimization, it

uses a default estimated hit rate for calculation but continuously

monitors its actual performance at runtime. If the performance is

not expected, Pipeleon will adjust the implementation by using

different caching strategies or adopting other optimizations. Cache

tables consume extra memory space. Pipeleon reserves a fixed bud-

get for each cache and adopts LRU eviction when the cache is full.

Moreover, cache tables install entries upon cache misses, consum-

ing more entry insertion bandwidth. Similarly, Pipeleon sets an

insertion rate limit for each cache; insertions beyond the limit will

be dropped.

3.2.3 Table merging. Table merging combines multiple tables

into a larger table, so that the merged table performs several actions

with one key match. From the cost model perspective, this reduces

𝐿(𝜋) by making the path shorter. To maximize the performance

benefits, Pipeleon distinguishesmatch typeswhenmerging tables as

it could potentially alter the match type and thus result in different

numbers of memory accesses for the key match (different𝑚 values

in Equation 4a). For instance, whenmerging two exact tables𝑇𝐴 and

𝑇𝐵 , in order to preserve the program semantics, multiple ternary

entries with “*” must be inserted to express the case where one table

is missed but the other is hit or both tables are missed. Thus, table

merging may change exact tables into a ternary table, amplifying

the processing cost. Figure 6 shows a concrete example. The cost

model captures this by representing the latency reduction as (𝑚𝑇𝐴 +

𝑚𝑇𝐵 −𝑚𝑇𝐴𝐵
)·𝐿𝑚𝑎𝑡 . Merging tables into ternary tables introduces a

larger𝑚𝑇𝐴𝐵
, so the performance improvement could be negative.

Pipeleon addresses this by generating a merged exact table without

ternary entries as a cache. Packets missing the cache (the merged

table) will fall back to the original tables. Note that this cache differs

from the one generated by table caching. Its cache entries are the

result of table merging, and it will not initiate entry insertion upon

cache misses.

In contrast, previous work [20, 33, 36] employs techniques that

resemble Pipeleon’s table merging, but they serve different pur-

poses. For example, earlier SDN work [33] proposes to compose

OpenFlow tables for coordination across multiple controllers with-

out considering performance optimization. A more recent work,

Cetus [36], utilizes table merging to reduce the diameter of the

table B {
 key= { dstIP: exact; }
 actions={ b1; b2; }
 default_action = b2;
}
1.1.0.0 => b1

table A {
 key= { srcIP: exact; }
 actions={ a1; a2; }
 default_action = a2;
}
10.0.0.1 => a1

table AB {
 key= { srcIP: ternary; dstIP: ternary; }
 actions={a1b1; a1b2; a2b1; a2b2; }
}
10.0.0.1 0xFFFFFFFF 1.1.0.0 0xFFFFFFFF => a1b1 priority=2
10.0.0.1 0xFFFFFFFF * 0x00000000 => a1b2 priority=1

* 0x00000000 1.1.0.0 0xFFFFFFFF => a2b1 priority=1
* 0x00000000 * 0x00000000 => a2b2 priority=0

Figure 6: The naïve merge of two exact tables will generate a
ternary table which could have worse performance.

dependency graph. It is worth noting that the table merging in

Cetus does not necessarily merge two tables; instead, its goal is to

pack more tables into one stage by eliminating their dependency.

In other words, Cetus focuses on resource optimization, which is

the first-order consideration for RMT architectures. On the other

hand, table merging in Pipeleon is performance-driven. Pipeleon
enhances the technique by taking table types into consideration to

fully unleash its benefits.

Optimization considerations. Table merging can lead to a Carte-

sian product of entries in original tables, which enlarges the table

sizes and amplifies the entry update rates. For instance, when merg-

ing table 𝑇𝐴 and 𝑇𝐵 , in the worst case, each entry in table 𝑇𝐴 needs

to be combined with all entries in table 𝑇𝐵 , so Pipeleon estimates

the number of entries in the merged table 𝑁 (𝑇𝐴𝐵) as 𝑁 (𝑇𝐴) · 𝑁 (𝑇𝐵).

Similarly, inserting a new entry in 𝑇𝐴 can end up with inserting

𝑁 (𝑇𝐵) entries in the merged table, so Pipeleon approximates the

insertion rate 𝐼 (𝑇𝐴𝐵) as 𝐼 (𝑇𝐴) · 𝑁 (𝑇𝐵) + 𝐼 (𝑇𝐵) · 𝑁 (𝑇𝐴). Therefore,

compared to table caching, table merging targets small tables with

infrequent entry updates. Pipeleon thus monitors the table sizes

and entry update rates of the merged tables at runtime. If they

dramatically increase at runtime, Pipeleon will reverse the merge

and recompute the optimizations.

3.2.4 Extending to heterogeneous targets. Pipeleon’s optimiza-

tion techniques can be extended to SmartNICs with a mix of ASIC

and CPU cores. In this case, Pipeleon partitions the program onto

ASIC/CPU cores to achieve both high performance and flexibility.

Packets can migrate between ASIC/CPU cores to finish their pro-

cessing with intermediate data piggybacked as a special header. One

problem here is to restore the processing context when a packet

(re-)enters a core because its state will be cleaned once it leaves

the core. Pipeleon addresses this by inserting a navigation table

and a migration table at the front and end of each program compo-

nent that is assigned to an ASIC/CPU core. The navigation table

matches on special metadata named next_tab_id that records the

next table for its processing. Thus, Pipeleon can resume processing

by jumping to the stored next table directly. The migration table

updates next_tab_id before packets migrate to the other core.

Packet migration between ASIC/CPU cores could potentially in-

cur additional latency. As a result, besides the consideration of flexi-

bility (e.g., ASIC-unsupported operations should run on CPU cores),

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

A

B

C

D

E A

B

C

D

E

SW

A

B

C

D

E

Reorder C,D

HW

SW

HW

Cache B,D

A

B

C

D

EB D

C
Copy C

SW

HW

A

B

C

D

EB D

A

B

C

D

EB D

Figure 7: Quick examples of the migration minimization.

the partition should also consider the migration overhead. Pipeleon
employs three techniques to minimize the migration overhead: (1)

Table reordering. Pipeleon minimizes unnecessary migrations by

rearranging the order of tables, ensuring consecutive processing

of more tables on the ASIC/CPU core. (2) Table caching. For tables
on CPU cores that have ASIC-unsupported match keys, Pipeleon
maintains a flow cache on the ASIC cores to store the match re-

sults. This allows subsequent packets to be processed by ASICs

without requiring migration. (3) Table copying.When packets mi-

grate between ASIC/CPU cores multiple times, Pipeleon considers

duplicating the table needed by both to reduce migration. Figure 7

demonstrates these optimizations with simplified examples.

4 PIPELET-BASED OPTIMIZATION
With the above optimizations, Pipeleon transforms the input graph

𝐺 into an optimized graph 𝐺∗ where 𝐿(𝐺∗) < 𝐿(𝐺). However, a

range of transformations may be possible with different perfor-

mance gains, and these transformations may consume additional

resources—e.g., a cache table requires extra memory and may lead

to more entry insertions upon cache misses. Moreover, they could

conflict with each other—e.g., merging 𝑇𝐴 with 𝑇𝐵 will prevent

swapping the order of 𝑇𝐵 and 𝑇𝐶 . Therefore, Pipeleon needs to

solve an optimization problem to find the best optimization option

with the highest performance within the resource limits. We define

it as follows:

min 𝐿(𝐺∗)

s.t. (Memory)

∑︁
𝑣𝑖 ∈𝐺∗

𝑀(𝑣𝑖) ≤ 𝑀

(Entry update rate)

∑︁
𝑣𝑖 ∈𝐺∗

𝐸(𝑣𝑖) ≤ 𝐸

(5)

where 𝑀(𝑣𝑖) and 𝐸(𝑣𝑖) represent the memory size and entry up-

date rate of node 𝑣𝑖 on the optimized graph, and 𝑀 and 𝐸 denote

the memory and update bandwidth constraints. These are part of

the formulation because Pipeleon’s optimizations will alter their

consumption. For the memory, users can specify the maximum

memory size that Pipeleon can utilize for the optimization process.

Pipeleon approximates the memory consumption of a MA table

using the total size of its table entries. Given that LPM tables and

ternary tables are implemented as multiple hash tables, Pipeleon
multiplies the entry size with the same parameter𝑚 as in Equa-

tion 4a. Pipeleon determines the entry update rate of each table

by monitoring its invocation of the entry update APIs (i.e., entry
insertion/deletion/modification) in the control plane.

The naïve solution. One naïve solution to the problem is to

compute all possible optimization options across the entire program

to find the global optimum. However, this approach leads to a large

search space and significant computation time. For instance, in the

case of table caching optimization, a P4 program with 10 tables

would result in 2
10

options if we examine whether to create a

cache for each table. Likewise, table reordering optimization could

result in up to 10! (factorial) options of different table orders. The

space will further increase exponentially when considering other

strategies and their combinations. This extensive computation time

incurs significant delays, leading to a potential lag in timeliness

and a risk of missing important profile changes.

One reason leading to the slowness is that the naïve solution

treats each MA table in the program equally. However, MA tables

contribute to the program’s inefficiency differently, depending on

their implementations and the proportion of traffic flowing through

them. Accordingly, the performance gain achieved by optimizing

them also varies. For instance, optimizing a piece of complicated

code serving 90% traffic is more likely to produce more performance

improvements than enhancing an already-simple code snippet serv-

ing only 10% traffic. The global search approach, lacking the ability

to distinguish between important and less significant MA tables,

may spend a considerable amount of time exploring options that

yield minimal benefits.

4.1 Top-𝑘 Pipelet Formation and Detection
Inspired by prior region-based compilers [30, 45, 55], Pipeleon re-

duces the complexity by splitting the program into smaller pieces

and prioritizing pieces that contribute the most to the program cost.

The intuition is that optimizing program bottlenecks is more likely

to yield higher gains.

4.1.1 Pipelet formation. Pipeleon proposes to use pipelets as its
basic optimization units. A pipelet is a piece of P4 code without con-

trol flow branches, akin to a “basic block” in traditional code [22].

However, pipelets are a domain-specific concept and they are com-

posed of only MA tables; each table could have multiple actions,

generating different execution paths in the pipelet. As shown in

Figure 8, Pipeleon partitions a program into pipelets by checking

two program elements: conditional branches and switch-case ta-

bles, both creating multiple dataflows in the program. Pipeleon
regards a switch-case table as an individual pipelet while ignoring

the conditional branches because they contribute less overhead.

However, when a P4 program has many branches, it will be

partitioned into very short pipelets (e.g., only with one table), and

this would restrict the optimizations Pipeleon can perform. We

solve this issue by allowing multiple neighboring pipelets to form a

pipelet group for joint optimizations. Concretely, if several pipelets

for optimization (top-𝑘 pipelets) can form a larger code block with

a common branch node, Pipeleon will view them as a pipelet group

and optimize them together. To simplify the computation, Pipeleon
restricts the pipelet group to having only one node receiving all

incoming traffic, and the traffic is required to move to the same node

after leaving the group. Moreover, long pipelets could form when a

program has few conditional branches, which diminishes the bene-

fits of pipelet partition. Pipeleon further partitions large pipelets

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

Pipelets

s

r

s

r

①

④

②

③

Group①②

s

r

Group①②③④

If-else branch Switch-case table Pipelet groupPipelet

…
Partition long

pipelets

Figure 8: The illustration of pipelet partition in Pipeleon.

into smaller ones in this case. Figure 8 illustrates the partitioning

with a concrete example.

4.1.2 Hot pipelet detection. After pipelet partitioning, Pipeleon
prioritizes its optimization towards pipelets that contribute the

most latency, or the top-𝑘 “hot” pipelets. Pipeleon pinpoints these

pipelets in a program by combining the cost model and runtime

profiling. Concretely, it calculates the cost of a pipelet by treating it

as a subgraph𝐺 ′ and reusing the cost model in §3.1. The latency of

a pipelet is then computed as 𝐿(𝐺 ′) · 𝑃 (𝐺 ′), the subgraph’s latency
weighted by its probability. 𝑃 (𝐺 ′) is the probability that a packet can
reach the pipelet, which can be calculated as the sum of probabilities

for all reachable paths from the graph root to the pipelet.

For this calculation, Pipeleon needs to know the edge probabil-

ity 𝑃 (𝑒𝑖 |...) and action probability 𝑃 (𝑎) as defined in Equations 2a

and 4b, respectively. To this end, Pipeleon instruments the input

program by associating a counter with each conditional branch and

action. These counters increment by one whenever a packet hits

the corresponding branch or action. Therefore, for a table with 𝑛

actions, the probability of action 𝑎𝑖 can be calculated as 𝑐𝑖/
∑𝑛
1
𝑐 𝑗 ,

where 𝑐𝑖 is the counter value of 𝑎𝑖 . One problem, however, is that

when the input program undergoes transformations by Pipeleon,
its original structure will be modified. To obtain the counter values

for the original program, Pipeleon maintains a counter map that

links the optimized program to its original counterpart. For exam-

ple, when a table is optimized by table caching, its traffic is split

into two parts: traffic that hits the cache, and traffic that misses

the cache and falls back to the original table. In this case, Pipeleon
computes the counter values before optimization by summing up

the corresponding counters in the cache table and original table.

The above steps serve as the foundation for Pipeleon to select

top-𝑘 pipelets, with 𝑘 being adjustable based on the available time

budget and program size. The top-𝑘 pipelets are dynamic and can

change in response to variations in traffic patterns and updates to

table entries. Pipeleon periodically recomputes the top-𝑘 pipelets

and generates new optimizations if they have changed.

4.2 The Best Optimization Search
Pipeleon solves Equation 5 in two steps. First, it performs a lo-

cal search to compute all possible optimizations for each top-𝑘

pipelet. Then, it conducts a global search to find the best combina-

tion that minimizes 𝐿(𝐺∗) within the specified resource limits. In

the first step, for each top-𝑘 pipelet, Pipeleon computes all possible

optimizations for each technique independently. For instance, a

pipelet with two tables, 𝑇𝐴 and 𝑇𝐵 , will generate four table caching

candidates [𝑇𝐴], [𝑇𝐵], [𝑇𝐴][𝑇𝐵], and [𝑇𝐴 , 𝑇𝐵], where [·] denotes
applying the corresponding optimization to the enclosed tables.

Similarly, it will generate one merging candidate, [𝑇𝐴 ,𝑇𝐵], and two

table reordering options, 𝑇𝐴 → 𝑇𝐵 and 𝑇𝐵 → 𝑇𝐴 . Next, Pipeleon
enumerates all valid combinations of these candidates. Notably,

since Pipeleon does not consider applying merging and caching to

the same table, the merging candidate cannot co-exist with other

caching candidates, e.g., merging [𝑇𝐴 ,𝑇𝐵] and caching [𝑇𝐴] is not a

valid combination. Consequently, the above example results in five

cases for each table order. For valid combinations, Pipeleon com-

putes their performance gain and overhead based on the cost model.

Without resource limits, the best global plan can be determined by

selecting the candidate with the highest performance gain for each

pipelet. With resource limits, however, Pipeleon formulates it as a

knapsack problem—determining which optimization candidate to

apply so that the total overhead remains within the resource limits

and the performance gain is as large as possible. Pipeleon solves the

problem by adapting the classic knapsack dynamic programming

solution. We defer the algorithm pseudocode to Appendix A.1.

5 EVALUATION
We evaluate Pipeleon comprehensively to answer three key re-

search questions: (1) how effective are Pipeleon’s P4 performance

optimizations? (2) how well can Pipeleon adapt to runtime pro-

file changes? (3) how effective is the top-𝑘 pipelet algorithm in

terms of profiling overhead, optimization speed, and performance

improvement?

5.1 Prototype and Setup
We have implemented a prototype of Pipeleon in about 9800 lines

of code in Python. The system takes the intermediate file generated

by the P4 compiler as input (e.g., a P4 .json representation), converts
it to a graph-based IR, transforms the graph using the proposed

optimizations, and finally converts the optimized graph back to the

intermediate file. Thus, Pipeleon performs source-to-source com-

pilation and eventually relies on the vendor compilers to compile

the program into the device. Runtime profiling is achieved by re-

trieving the P4 counter values (for probability) and monitoring the

invocation of entry update APIs (for entry update rates). The cost

model is implemented as an independent module with configurable

performance parameters, responding to the queries issued by the

optimizer. We evaluate Pipeleon with three setups:

(1) Nvidia BlueField2 (2 ports×100Gbps). BlueField2 has a set
of ASIC MA cores and an array of ARM CPU cores. We use an

early vendor prototype for programming BlueField2 ASIC cores

which is based upon the DOCA framework [10] with DPDK APIs.

The DPDK code executes on the same P4-programmable ASIC

cores and Nvidia is working toward upgrading the DPDK APIs

to more flexible P4 APIs. Runtime reconfiguration is achieved by

altering the DPDK flows in the pipeline; the P4 framework will

also support live reconfiguration using the same techniques for

Nvidia programmable switches [63]. We connect two BlueField2

NICs back-to-back using a 100Gbps QSFP cable. One port of each

NIC is used, so the maximum throughput of this setup is 100Gbps.

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

036912151821
ACL table position

50

75

100

Th
ro

ug
hp

ut
(G

bp
s)

Drop 25%
Drop 50%
Drop 75%

(a) Table reordering (BlueField2)

036912151821
ACL table position

20

30

40

Th
ro

ug
hp

ut
(G

bp
s)

Drop 25%
Drop 50%
Drop 75%

(b) Table reordering (Agilio CX)

No cache [1][2][3][4][1,2][3][4] [1,2,3][4] [1,2,3,4]
Table caching option

0

20

40

60

80

100

Th
ro

ug
hp

ut
(G

bp
s)

0

10

20

30

40

BlueField2
Agilio CX

(c) Table caching

No merge [1,2] [1,2,3] [1,2,3,4]
Table merging option

0

20

40

60

80

100

Th
ro

ug
hp

ut
(G

bp
s)

0

10

20

30

40

BlueField2
Agilio CX

(d) Table merging

Figure 9: The benefits of Pipeleon’s performance-oriented optimizations on Nvidia BlueField2 and Netronome Agilio CX.

(2) Netronome Agilio CX (1 port×40Gbps). Netronome NICs

are equipped with a set of specialized CPU cores (micro-engines)

programmable in P4. Netronome SmartNICs do not have native

support for runtime reconfiguration, so reloading programs requires

micro-engine reflashes and causes service interruption. This use

case represents a disaggregated SmartNIC scenario as pursued by

the DASH project [5, 18]. Before a SmartNIC is reconfigured, traffic

needs to be redirected to other SmartNICs in the same cluster to

avoid downtime. We skip traffic redirection in our setup, as it is not

the focus of this work.

(3) BMv2-based emulator. To test a more diverse range of poten-

tial SmartNIC platforms and costmodels, we implement an emulator

by extending the BMv2 software codebase [11] in about 5300 LoC.

Specifically, we use the original BMv2 pipeline to emulate the ASICs

and add another pipeline to emulate the general-purpose CPU cores.

Packets are allowed to migrate between the two pipelines for pro-

cessing. The emulator can be configured with different SmartNIC

parameters to support different cost models, and it times its own ex-

ecution based on the configured parameters (e.g., CPU core speeds).

Live reconfiguration is accomplished by integrating the runtime

programmable Nvidia ASIC emulator developed by prior work [63].

We generate traffic workloads at line speed using TRex [15] and

trafgen [14]. All traffic workloads use the packet size of 512 Bytes.

5.2 Benefits of the Optimizations
5.2.1 Performance on BlueField2 and Agilio CX. We first eval-

uate the effectiveness of Pipeleon’s performance-oriented optimiza-

tions on BlueField2 and Agilio CX in a set of microbenchmarks. The

microbenchmark programs are constructed using pipelets with four

tables, replicated with a scale factor 𝑁 as the control parameter.

Table reordering. To evaluate the benefits of table reordering,

we convert the last table of the program into an ACL table, which

drops traffic with a configured rate. It has no data dependency with

other tables so it can be freely reordered. Figures 9a-9b demonstrate

the performance improvement when the ACL table is reordered

to earlier positions. As we can see, promoting the table to earlier

positions leads to higher and higher performance until it achieves

the line rate. Moreover, higher percentages of dropped traffic lead

to higher performance gain.

Table caching. To evaluate table caching, we adopt a similar bench-

marking strategy. Figure 9c presents the results of different caching

strategies, where [𝑡𝑖 ...𝑡 𝑗] denotes caching tables 𝑡𝑖 to 𝑡 𝑗 together. For

example, [1,2,3][4] means that tables 𝑇1 to 𝑇3 are cached together,

and table𝑇4 is in a second cache. As the figure shows, caching more

1~2 2~3 3~4
Pipelet length

0
10
20
30
40
50
60

La
te

nc
y

re
du

ct
io

n(
%

) Heavy packet drop

1~2 2~3 3~4
Pipelet length

Small static tables

1~2 2~3 3~4
Pipelet length

High traffic locality
Reordering Merging Caching

Figure 10: Pipeleon’s performance on synthesized programs.

tables with fewer caches leads to greater performance. BlueField2 al-

most reaches the line rate at [1,2,3][4], which is 2.5x higher than the

case without a cache. In this experiment, we used a different match

key for 𝑇1 to 𝑇4 and sent 40000 different flows. With this setup,

[1][2][3][4] maintains a 90% hit rate by using 54 cache entries in

total while [1,2,3,4] will need 36k entries to sustain the same hit rate

because it needs to do a cross product of all the match keys. Agilio

CX demonstrates the same trend (right y-axis). It is worth noting

that Netronome SmartNICs have a vendor-native “flow cache” fea-

ture for the whole program, and all our benchmarks are conducted

with it enabled. We can see that our cache optimization improves

its native performance even with the built-in cache.

Table merging. Figure 9d shows the results of different table merg-

ing options using the same evaluation methodology. We have ob-

served 1.3x-2.1x throughput improvements on BlueField2 and 1.2x-

1.8x on Agilio CX. Similar to table caching, table merging will incur

more overhead when merging more tables. For instance, on Agilio

CX, the strategy [𝑡1, 𝑡2, 𝑡3, 𝑡4] achieves 26% higher throughput than

[𝑡1, 𝑡2, 𝑡3], but it generates 45.6k (19x) more table entries.

5.2.2 Performance on broader P4 programs.We next measured

the performance of Pipeleon on broader types of P4 programs,

adapting a recent tool [50] that can synthesize P4 programs. To-

gether with a runtime profile synthesizer, we generated programs

in three categories: programs with heavy packet drops, programs

composed of small static tables, and programs with high traffic

locality. To minimize the impact of traffic distribution, we restricted

each program to having only one pipelet. For each category, we syn-

thesized 100 programs with different pipelet lengths (PL). Figure 10

summarizes the average optimization performance computed by

the cost model. It demonstrates that Pipeleon can improve pro-

gram performance using different optimization techniques. Longer

pipelets tend to have higher improvements because they provide

more optimization opportunities. The improvement produced by

table merging is not as significant as the other two techniques. One

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

reason is that we restrict Pipeleon to merge at most two tables to

control the memory overhead. Overall, Pipeleon can reduce the

latency by 27% to 52% across different types of programs.

5.2.3 Extending to heterogeneous ASIC/CPU cores. Our opti-
mizations can be extended to heterogeneous ASIC/CPU cores with

packet migration. Here, we evaluate one of our techniques, table

copying, proposed to minimize the packet migration overhead. We

perform the experiment using our BMv2 emulator which supports

this feature. The program in this experiment contains several in-

terleaving tables with unsupported actions. The naïve partition

leads to multiple migrations for each packet. Pipeleon optimizes

the partition by copying the needed tables to the software pipeline.

We measured the performance with different migration overhead

and the proportion of traffic going to the software. Detailed results

are included in Appendix A.2.

5.3 Runtime Performance Optimization
Next, we evaluate the runtime optimization ability of Pipeleon
on BlueField2, Agilio CX, and an emulated NIC model using our

BMv2 emulator. We conducted three end-to-end case studies with

different profile changes; all use cases are adapted from real-world

scenarios as discussed below.

5.3.1 Service load balancing on BlueField2. We built a load

balancer pipeline on BlueField2which distributes incoming requests

to several replicated service providers to balance the workload. The

program has a sequence of MA tables starting with eight tables for

regular packet processing, followed by two tables for load balancing,

and ending with two ACL tables. The baseline optimization caches

the whole program without runtime adaptation.

Frequent entry insertion. In the beginning, both systems cached

the whole program and achieved line rate, as shown in Figure 11a.

However, starting at time t=16s, the load balancer tables experi-

enced a higher entry insertion rate, which caused frequent cache in-

validation; thus, the throughput dropped to around 20Gbps. Pipeleon
performed runtime profiling every five seconds. When it detected

the problem, it adapted the pipeline by removing the cache, which

increased the throughput back to the line rate.

Packet dropping rate change. Next, we tested traffic pattern

changes, which lead to different packet dropping rates in the ACL

tables. The throughput dropped again because more traffic was

dropped by the second ACL table. Pipeleon reoptimized the pro-

gram by reordering the ACL tables after detecting the dropping rate

change, which improved the throughput up to 100Gbps again. In

contrast, the baseline program delivered low throughput through-

out the experiment.

5.3.2 Packet routing on Agilio CX.We created a packet routing

program for Agilio CX following the main functionality in DASH

pipeline [5], which is composed of direction lookup, metadata setup

including appliance ID, ENI, and VNI, connection tracking, three

levels of ACLs, and routing. Since connection tracking changes the

flow behavior, it is not compatible with Netronome’s built-in cache

which records the flow behavior by observing the first packet. Thus,

we disable it for this experiment. We use the original program with

no optimization as our baseline and show the result in Figure 11b.

Static small tables + biased ACL dropping rates. We started by

deploying the original program and monitoring the traffic profile

every 10 seconds. After running for 10 seconds, Pipeleon found

that the direction lookup and metadata setup tables were small and

static, so it merged them; it also reordered the ACL tables based on

their dropping rates. This improved the performance by 43.5%.

Even ACL dropping rates + long-lived flows. Then, we changed
the traffic pattern to create even packet dropping rates in the ACLs

with long-lived flows. After Pipeleon observed the change in the

next optimization window, it reoptimized the program by caching

the ACL tables instead, which improved the throughput by 35.2%.

5.3.3 Network function composition. As our last case study,

we investigate a more sophisticated scenario where multiple net-

work functions are composed together. The program integrates the

load balancer and packet routing in previous case studies, and the

L2/L3/ACL program used in prior work [52]; this produces nine

pipelets in total. We evaluated Pipeleon with a different NIC model

using our BMv2 emulator. On this emulated NIC, LPM and ternary

matches have the same cost, which is 3x slower than exact matches;

conditional branches have 1/10 the cost of an exact table.

Dynamic top-𝑘 pipelet change. We dynamically change the traf-

fic pattern to create top-𝑘 pipelets in different network functions.

Pipeleon periodically selects the top-30% costly pipelets for opti-

mization. We use the original program as the baseline. Figure 11c

presents the average latency change over time. As we can see,

Pipeleon can dynamically reoptimize the program when the traffic

pattern changes, which reduces the latency by 49% on average.

5.4 The Top-𝑘 Pipelet Optimization
Pipeleon balances the optimization time and effectiveness by pri-

oritizing the top-𝑘 hot pipelets selected based on runtime profiles.

Here, we evaluate the profiling overhead as well as the top-𝑘 opti-

mization speed and effectiveness.

5.4.1 Profiling overhead. Pipeleon profiles the traffic distribution

by instrumenting each conditional branch and table action with a

programmable counter. The counter updates incur extra latency

to the data path. We study its impact on latency and throughput

with different counter updates. We measured the latency using

ib_write_lat and observed the throughput using the traffic gen-

erator. Figure 12a and 12b show the latency increase and throughput

degradation with different numbers of per-packet counter updates,

corresponding to the numbers of conditional branches as well as

the number of table actions that a packet traverses. The results indi-

cate that the overhead is similar across different counter quantities

and action complexities. Moreover, as Pipeleon only utilizes the

counter values to compute probabilities, sampling a small fraction

of traffic with the same sampling rate to update the counter will

not alter the result. Consequently, Pipeleon uses packet sampling

to further reduce the profiling overhead. As shown in the figure, by

sampling 1/1024 traffic, the overhead for latency and throughput is

only 4.3% and 5.0% on Agilio CX respectively. We performed the

same experiment on BlueField2 and found that its counter updates

are more efficient (Figure 12c). Even without sampling, the maxi-

mum throughput degradation is only 2.0%. We did not observe a

noticeable latency increase on BlueField2.

5.4.2 Optimization speed. We next evaluate the optimization

speed of Pipeleon. The computation time depends on the number

of pipelets (PN) and the pipelet lengths (PL) of the program. To

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

0 10 20 30 40 50
Time(s)

25

50

75

100

Th
ro

ug
hp

ut
(G

bp
s)

High insertion
 rate

 Dropping
rate change

Pipeleon
Baseline

(a) Load balancer on BlueField2

0 50 100 150 200 250
Time(s)

15

20

25

30

35

40

Th
ro

ug
hp

ut
(G

bp
s)

Small table + biased
 dropping rate

Long flow + even
 dropping rate

Pipeleon
Baseline
Reloading

(b) Packet routing on Agilio CX

0 20 40 60 80 100
Packet sequence

0

200

400

600

800

Em
ul

at
ed

 la
te

nc
y

NF1

NF2 NF3
Pipeleon
Baseline

(c) NF composition on BMv2 emulator

Figure 11: Pipeleon significantly improves the performance through runtime profile-guide optimization.

20 30 40
Per-packet counter updates

0

10

20

30

40

La
te

nc
y

in
cr

ea
se

(%
)

Simple action
Complex action
Simple action sampling

(a) Latency overhead (Agilio CX)

20 30 40
Per-packet counter updates

0
2
4
6
8

10
12

Th
ou

gh
pu

t d
eg

ra
da

tio
n(

%
)

Simple action
Complex action
Simple action sampling

(b) Throughput overhead (Agilio CX)

20 30 40
Per-packet counter updates

0
2
4
6
8

10
12

Th
ou

gh
pu

t d
eg

ra
da

tio
n(

%
)

Simple w/ counter
Complex w/ counter

(c) Throughput overhead (BlueField2)

Figure 12: Pipeline’s runtime profiling adds minimal overhead on both Agilio CX and BlueField2.

evaluate the algorithm with various inputs, therefore, we synthe-

sized 300 P4 programs and divided them into three groups based

on their PN and PL values. We measured the top-𝑘 optimization

turnaround time and compared them against the exhaustive search

(ESearch, i.e., top-100%) baseline. As shown in Figure 13, the opti-

mization time increases with PN, PL, and 𝑘 . In all cases, Pipeleon
is significantly faster than ESearch. Concretely, the median com-

putation time for top-20% search is 3, 8, and 19 seconds for each

group while the ESearch takes 13, 87, and 179 seconds. By selecting

the top 20% costly pipelets for optimization, Pipeleon speeds up

the optimization by 8.2x, which enables runtime optimization for

traffic profiles with sub-minute-level changes.

5.4.3 Top-k effectiveness. We also verified that the top-𝑘 algo-

rithm can achieve similar optimization effectiveness to the ESearch.

The optimization benefit is influenced by the traffic distribution

across pipelets. The top-𝑘 approach performs better if more traffic

is aggregated in a few pipelets. We use entropy to describe the

degree of traffic aggregation in the program, which is calculated

using the pipelet traffic distribution. High entropy means packets

are distributed more evenly among pipelets. We reused the first

group of programs in Figure 13 (leftmost) for this experiment. To

test Pipeleon with a variety of profiles, we randomly synthesized

2000 runtime profiles for each program and computed their entropy

values. We used the profile with 10th, 50th, and 90th entropy values

for this evaluation. In Appendix A.3, we visualize the pipelet traffic

distribution and show the performance of ESearch with different

traffic distributions. Here, we normalized the performance of top-𝑘

search to the ESearch, e.g., the result of 0.8 means the top-𝑘 search

achieves 80% of performance improvement found by the ESearch.

100 101 102

Time(s)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

PN=12.5, PL=2.0

101 102 103

Time(s)

PN=12.6, PL=3.0

101 102 103

Time(s)

PN=15.0, PL=3.0
k=20%
k=30%
k=40%
k=100%

Figure 13: The optimization time with different 𝑘 values.

0.7 0.8 0.9 1.0
Top-k gain / ESearch gain

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10th entropy

0.7 0.8 0.9 1.0
Top-k gain / ESearch gain

50th entropy

0.7 0.8 0.9 1.0
Top-k gain / ESearch gain

90th entropy
k=20%
k=30%
k=40%
k=50%

Figure 14: The impact of k on optimization performance.

As we can see in Figure 14, for the 10th entropy profile, top-20%

can achieve higher than 70% performance of the ESearch for all

programs. When using top-50%, 80% of the programs can achieve

higher than 95% benefits of the ESearch. The trend does not change

much for the 50th and 90th entropy profiles.

5.4.4 Cross-pipelet optimization. Pipeleon further performs

cross-pipelet optimization to increase optimization opportunities

when the selected top-𝑘 pipelets can form a pipelet group. We eval-

uated this by synthesizing programs dominated by short pipelets

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

40% 50% 60%
Top-k value

0

10

20

30

40

La
te

nc
y

re
du

ct
io

n(
%

)

w/o group
w/ group

(a) Average benefits

0 10 20 30 40
Latency reduction(%)

0.00

0.25

0.50

0.75

1.00

CD
F

w/o group
w/ group

(b) Program benefits (k=50%)

Figure 15: Pipelet group optimization can further improve
performance via cross-pipelet optimization.

(i.e., one table). Results are shown in Figure 15. On average, the

group optimization further reduces the latency by 6.7% on top of

the pipelet-based optimization, which increases the total latency

reduction up to 37.9% when 𝑘=60%. For pipelets that are optimized

as a group, their performance is further improved by 26.5% on the

basis of pipelet-based optimization.

6 DISCUSSIONS AND FUTUREWORK
Adaptability to runtime profile changes. The turnaround time

of Pipeleon is influenced by the program size and the top-𝑘 pa-

rameter, which directly impact the algorithm computation time as

demonstrated in §5.4.2. Additionally, Pipeleon requires invoking

SmartNIC’s toolchains for compiling and deploying the optimized

program, and the time taken for this process is implementation-

specific. Thus, our current design aims to effectively handle runtime

changes occurring at a frequency of seconds or greater. Compared

to today’s state of the art, without the possibility of runtime adap-

tation, this is already a significant advancement. To further adapt

to faster changes, one future step would be to compute new opti-

mizations as well as compile and deploy updates incrementally as

proposed by recent works [48, 63, 64].

Hierarchical memory support. Our current design does not

consider the performance difference across memory hierarchies

offered by certain SmartNICs (e.g., Netronome Agilio CX). Pipeleon
operates at the P4 layer, and the P4 language does not have native

support for controlling the memory location of tables. For example,

Netronome’s compiler places all P4 tables into the external memory

(EMEM), which aligns with our current memory model. In the

future, if SmartNICs provide support for explicitly specifying the

memory location of a table at the P4 level, Pipeleon could explore

the benefits of hierarchical memory by enhancing the cost model

and the optimization constraints to achieve even better performance.

We view this as our future work.

Beyond SmartNIC packet processing. SmartNICs can provide a

wide range of uses beyond packet processing, such as application

acceleration [38, 51], encryption/decryption [57], and deep packet

inspection [32]. Although these functions are not currently the

primary functions supported by P4, we believe that Pipeleon can

be extended to handle them if the P4 language incorporates the

necessary features in the future. In addition to SmartNICs, Pipeleon
could also benefit a broader range of P4 programmable devices

that have performance variances, such as dRMT switches [21, 63],

FPGAs [60], P4-OVS [4, 44], and P4-DPDK [12].

7 RELATEDWORK
SmartNIC systems. The research community has offloaded a

plethora of end host functions onto SmartNICs [23, 25, 26, 35, 38,

41, 43, 49, 51, 53, 65, 68], but optimizations are usually low-level,

scenario-specific, and manual. As P4 emerges as the prevailing lan-

guage for SmartNIC programming, the demand for optimizing sys-

tem performance at the P4 level has grown significantly. Pipeleon
alleviates the burden of developers by providing an automated

optimization framework for P4 SmartNIC programs.

P4 compilation and optimization. A line of P4 compilers for

RMT-based programmable ASICs exists [17, 27–29, 31, 34, 36, 54, 58,

62], simplifying the programming process and optimizing resource

utilization. One noteworthy example is Cetus [36], which reduces

the dependency diameter by packing multiple tables into a single

stage. In contrast, P4 performance optimizations remain relatively

understudied. B-Cache [66] accelerates P4 processing by employing

a cache for the entire program. MATReduce [20] reduces duplicated

match operations by merging tables with common match keys.

Pipeleon draws inspiration from these studies but enhances these

techniques for better performance. There are also studies that com-

pile P4 to heterogeneous targets [56, 59, 67]. Similarly, Pipeleon
supports extending to heterogeneous targets by partitioning the

pipeline between ASIC and CPU cores on SmartNICs.

Profile-guided optimization. Profile-guided optimization has

proven successful for general-purpose applications [19, 45, 46, 61].

Similar ideas have been explored for optimizing network programs.

Morpheus [40] and NetReducer [24] optimize end host packet pro-

cessing in general-purpose languages using traffic statistics col-

lected at runtime or high-level policies. ESwitch [42] optimizes the

OpenvSwitch implementation dynamically based on the configu-

ration rules. P2GO [62] optimizes P4 programs with pre-collected

profiles by packing programs better onto switch ASICs. In contrast,

Pipeleon optimizes the performance of P4 SmartNIC programs

guided by the runtime-collected traffic and configuration profiles.

8 CONCLUSION
SmartNICs have the potential of delivering unmatched packet pro-

cessing performance, but unleashing their performance requires

substantial program optimizations. We have presented Pipeleon, an
automated performance-oriented optimization framework for P4

programmable multicore SmartNICs. Pipeleon proposes a set of P4

performance optimization techniques that rewrite the program for

higher performance. It overcomes the challenge of dynamic traffic

change by adopting a runtime profile-guided approach which spe-

cializes the program layout based on the recent traffic pattern and

configuration rules. Our evaluation on BlueField2, Agilio CX, and

BMv2-based emulator demonstrates that Pipeleon can significantly

improve the system performance with minimal profiling overhead.

ACKNOWLEDGMENTS
We thank our shepherd Kate Lin and the anonymous reviewers for

their insightful comments and suggestions. We also thank Alan Lo

for his assistance in developing an early prototype. This work was

supported in part by CNS-1801884, CNS-1942219, CNS-2016727,

CNS-2106388, CNS-2106751, CNS-2213387, CNS-2214272, a Google

Ph.D. Fellowship, and a VMware Early Career Faculty Grant.

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES
[1] Accessed 2023. AMD Pensando Infrastructure Accelerators. (Accessed 2023).

https://www.amd.com/en/accelerators/pensando.

[2] Accessed 2023. Announcing Project Monterey—Redefining Hybrid Cloud Archi-

tecture. (Accessed 2023). https://blogs.vmware.com/vsphere/2020/09/announcin

g-project-monterey-redefining-hybrid-cloud-architecture.html.

[3] Accessed 2023. AWS Nitro System. (Accessed 2023). https://aws.amazon.com/e

c2/nitro/.

[4] Accessed 2023. Bringing the power of P4 to OvS! (Accessed 2023). https:

//github.com/osinstom/P4-OvS.

[5] Accessed 2023. Disaggregated APIs for SONiC Hosts. (Accessed 2023). https:

//github.com/Azure/DASH.

[6] Accessed 2023. Intel Tofino: P4-programmable Ethernet switch

ASIC that delivers better performance at lower power. (Accessed

2023). https://www.intel.com/content/www/us/en/products/network-

io/programmable-ethernet-switch/tofino-series.html.

[7] Accessed 2023. IPU Based Cloud Infrastructure White Paper. (Accessed

2023). https://www.intel.com/content/www/us/en/products/docs/programmable

/ipu-based-cloud-infrastructure-white-paper.html.

[8] Accessed 2023. Netronome Agilio CX SmartNICs. (Accessed 2023). https:

//www.netronome.com/products/agilio-cx/.

[9] Accessed 2023. NVIDIA BlueField Data Processing Units. (Accessed 2023).

https://www.nvidia.com/en-us/networking/products/data-processing-unit.

[10] Accessed 2023. NVIDIA DOCA Software Framework. Accelerate application

development for the NVIDIA BlueField DPU. (Accessed 2023). https://developer.

nvidia.com/networking/doca.

[11] Accessed 2023. P4 behavioral model. (Accessed 2023). https://github.com/p4lan

g/behavioral-model.

[12] Accessed 2023. P4 driver SW for P4 DPDK target. (Accessed 2023). https:

//github.com/p4lang/p4-dpdk-target.

[13] Accessed 2023. P4 Portable NIC Architecture (PNA) version 0.5. (Accessed 2023).

https://p4.org/p4-spec/docs/PNA.html.

[14] Accessed 2023. trafgen—A fast, multithreaded network packet generator. (Ac-

cessed 2023). https://manpages.ubuntu.com/manpages/bionic/man8/trafgen.8.h

tml.

[15] Accessed 2023. TRex Traffic Generator. (Accessed 2023). https://trex-tgn.cisco.

com/.

[16] Accessed 2023. Zero-Copy Optimization for Alibaba Cloud Smart NIC Solution.

(Accessed 2023). https://www.alibabacloud.com/blog/zero-copy-optimization-

for-alibaba-cloud-smart-nic-solution593986.

[17] Anubhavnidhi Abhashkumar, Jeongkeun Lee, Jean Tourrilhes, Sujata Banerjee,

Wenfei Wu, Joon-Myung Kang, and Aditya Akella. 2017. P5: Policy-Driven

Optimization of P4 Pipeline. In Proc. SOSR.
[18] Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, James

Grantham, Silvano Gai, Mario Baldi, Krishna Doddapaneni, Arun Selvarajan,

Arunkumar Arumugam, Balakrishnan Raman, Avijit Gupta, Sachin Jain, Deven

Jagasia, Evan Langlais, Pranjal Srivastava, Rishiraj Hazarika, Neeraj Motwani,

Soumya Tiwari, Stewart Grant, Ranveer Chandra, and Srikanth Kandula. 2023.

Disaggregating Stateful Network Functions. In Proc. NSDI.
[19] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic

Feedback-Directed Optimization forWarehouse-Scale Applications. In Proc. CGO.
[20] Xiang Chen, Dong Zhang, and Haifeng Zhou. 2018. Matreduce: Towards High-

Performance P4 Pipeline by Reducing Duplicate Match Operations. In Proc.
GLOBECOM.

[21] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik,

Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac

Keslassy, Ariel Orda, and Tom Edsall. 2017. dRMT: Disaggregated Programmable

Switching. In Proc. SIGCOMM.

[22] Keith D Cooper and Linda Torczon. 2011. Engineering a compiler (2nd ed.). Elsevier.
231–232 pages.

[23] Tianyi Cui, Wei Zhang, Kaiyuan Zhang, and Arvind Krishnamurthy. 2021. Of-

floading Load Balancers onto SmartNICs. In Proc. APSys.
[24] Bangwen Deng, Wenfei Wu, and Linhai Song. 2020. Redundant Logic Elimination

in Network Functions. In Proc. SOSR.
[25] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.

NICA: An Infrastructure for Inline Acceleration of Network Applications. In Proc.
ATC.

[26] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack

Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,

Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,

Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure

Accelerated Networking: SmartNICs in the Public Cloud. In Proc. NSDI.
[27] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian,

Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A Cross-Platform

Language and Compiler for Data Plane Programming on Heterogeneous ASICs.

In Proc. SIGCOMM.

[28] Xiangyu Gao, Taegyun Kim, Michael DWong, Divya Raghunathan, Aatish Kishan

Varma, Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas Narayana, and

Aarti Gupta. 2020. Switch Code Generation Using Program Synthesis. In Proc.
SIGCOMM.

[29] Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong Zhu,

Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. 2023. CaT: A Solver-

Aided Compiler for Packet-Processing Pipelines. In Proc. ASPLOS.
[30] Richard E Hank, Wen-Mei W Hwu, and B Ramakrishna Rau. 1995. Region-Based

Compilation: An Introduction and Motivation. In Proc. MICRO.
[31] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,

and David Walker. 2022. Modular Switch Programming Under Resource Con-

straints. In Proc. NSDI.
[32] Joel Hypolite, John Sonchack, Shlomo Hershkop, Nathan Dautenhahn, André De-

Hon, and Jonathan M Smith. 2020. DeepMatch: Practical Deep Packet Inspection

in the Data Plane Using Network Processors. In Proc. CoNEXT.
[33] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor: A

Compositional Hypervisor for Software-Defined Networks. In Proc. NSDI.
[34] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling

Packet Programs to Reconfigurable Switches. In Proc. NSDI.
[35] Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe Yang, and Jiwu Shu. 2022.

AlNiCo: SmartNIC-Accelerated Contention-Aware Request Scheduling for Trans-

action Processing. In Proc. ATC.
[36] Yifan Li, Jiaqi Gao, Ennan Zhai, Mengqi Liu, Kun Liu, and Hongqiang Harry

Liu. 2022. Cetus: Releasing P4 Programmers from the Chore of Trial and Error

Compiling. In Proc. NSDI.
[37] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh Sivaraman, and Aditya Akella.

2020. PANIC: A High-Performance Programmable NIC for Multi-Tenant Net-

works. In Proc. OSDI.
[38] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and

Karan Gupta. 2019. Offloading Distributed Applications onto SmartNICs Using

iPipe. In Proc. SIGCOMM.

[39] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo

Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-

Accelerated Servers. In Proc. ATC.
[40] SebastianoMiano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and Gianni Antichi.

2022. Domain Specific Runtime Optimization for Software Data Planes. In Proc.
ASPLOS.

[41] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In Hwan

Doh, and Arvind Krishnamurthy. 2021. Gimbal: Enabling Multi-Tenant Storage

Disaggregation on SmartNIC JBOFs. In Proc. SIGCOMM.

[42] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos Kis, Levente Csikor,

Ferenc Juhász, Attila Kőrösi, and Gábor Rétvári. 2016. Dataplane Specialization

for High-Performance OpenFlow Software Switching. In Proc. SIGCOMM.

[43] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo

Park. 2020. AccelTCP: Accelerating Network Applications with Stateful TCP

Offloading. In Proc. NSDI.
[44] Tomasz Osiński, Halina Tarasiuk, Paul Chaignon, and Mateusz Kossakowski.

2020. P4rt-OVS: Programming Protocol-Independent, Runtime Extensions for

Open vSwitch with P4. In Proc. IFIP Networking.
[45] Guilherme Ottoni. 2018. HHVM JIT: A Profile-Guided, Region-Based Compiler

for PHP and Hack. In Proc. PLDI.
[46] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt: A

Practical Binary Optimizer for Data Centers and Beyond. In Proc. CGO.
[47] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-

halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and

Martin Casado. 2015. The Design and Implementation of Open vSwitch. In Proc.
NSDI.

[48] Yiming Qiu, Ryan Beckett, and Ang Chen. 2023. Synthesizing Runtime Pro-

grammable Switch Updates. In Proc. NSDI.
[49] YimingQiu, JiarongXing, Kuo-FengHsu, Qiao Kang,Ming Liu, Srinivas Narayana,

and Ang Chen. 2021. Automated SmartNIC Offloading Insights for Network

Functions. In Proc. SOSP.
[50] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet: Finding Bugs

in Compilers for Programmable Packet Processing. In Proc. OSDI.
[51] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-

murthy. 2021. Xenic: SmartNIC-Accelerated Distributed Transactions. In SOSP.

https://www.amd.com/en/accelerators/pensando
https://blogs.vmware.com/vsphere/2020/09/announcing-project-monterey-redefining-hybrid-cloud-architecture.html
https://blogs.vmware.com/vsphere/2020/09/announcing-project-monterey-redefining-hybrid-cloud-architecture.html
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://github.com/osinstom/P4-OvS
https://github.com/osinstom/P4-OvS
https://github.com/Azure/DASH
https://github.com/Azure/DASH
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/docs/programmable/ipu-based-cloud-infrastructure-white-paper.html
https://www.intel.com/content/www/us/en/products/docs/programmable/ipu-based-cloud-infrastructure-white-paper.html
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.nvidia.com/en-us/networking/products/data-processing-unit
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4-dpdk-target
https://github.com/p4lang/p4-dpdk-target
https://p4.org/p4-spec/docs/PNA.html
https://manpages.ubuntu.com/manpages/bionic/man8/trafgen.8.html
https://manpages.ubuntu.com/manpages/bionic/man8/trafgen.8.html
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
https://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa, et al.

[52] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,

Nick McKeown, and Jennifer Rexford. 2016. PISCES: A Programmable, Protocol-

Independent Software Switch. In Proc. SIGCOMM.

[53] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.

FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In Proc. NSDI.
[54] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid:

A Language for Control in the Data Plane. In Proc. SIGCOMM.

[55] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. 2006. A Region-Based

Compilation Technique for Dynamic Compilers. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 28, 1 (2006), 134–174.

[56] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nis-

hanth Shyamkumar, Shivani Burad, André DeHon, and Boon Thau Loo. 2021.

Flightplan: Dataplane Disaggregation and Placement for P4 Programs. In Proc.
NSDI.

[57] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.

2020. sRDMA–Efficient NIC-based Authentication and Encryption for Remote

Direct Memory Access. In Proc. ATC.
[58] Balázs Vass, Erika Bérczi-Kovács, Costin Raiciu, and Gábor Rétvári. 2020. Com-

piling Packet Programs to Reconfigurable Switches: Theory and Algorithms. In

Proc. Europe P4.
[59] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel, and Sándor

Laki. 2018. T4P4S: A Target-Independent Compiler for Protocol-Independent

Packet Processors. In Proc. HPSR.
[60] HanWang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Fos-

ter, and Hakim Weatherspoon. 2017. P4FPGA: A Rapid Prototyping Framework

for P4. In Proc. SOSR.
[61] John Whaley. 2001. Partial Method Compilation Using Dynamic Profile Informa-

tion. In Proc. OOPSLA.
[62] Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and Laurent Van-

bever. 2020. P2GO: P4 Profile-Guided Optimizations. In Proc. HotNets.
[63] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Piasetzky, Arvind

Krishnamurthy, and Ang Chen. 2022. Runtime Programmable Switches. In Proc.
NSDI.

[64] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Hongyi Liu, Matty Kadosh, Alan Lo,

Aditya Akella, Thomas Anderson, Arvind Krishnamurthy, TS Eugene Ng, and

Ang Chen. 2021. A Vision for Runtime Programmable Networks. In Proc. HotNets.
[65] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen

Han, Nan Chen, LebingWan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao Feng,

Feng Ning, Kai Chen, and Chuanxiong Guo. 2022. Tiara: A Scalable and Efficient

Hardware Acceleration Architecture for Stateful Layer-4 Load Balancing. In Proc.
NSDI.

[66] Cheng Zhang, Jun Bi, Yu Zhou, Keyao Zhang, and Zijun Ma. 2018. B-Cache: A

Behavior-Level Caching Framework for the Programmable Data Plane. In Proc.
ISCC.

[67] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. 2020. Gallium:

Automated Software Middlebox Offloading to Programmable Switches. In Proc.
SIGCOMM.

[68] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and Justine

Sherry. 2020. Achieving 100Gbps Intrusion Prevention on A Single Server. In

Proc. OSDI.

A APPENDIX
Appendices are supporting material that has not been peer-reviewed.

A.1 The Best Optimization Search Algorithm
Figure 16 shows the algorithm Pipeleon uses to search for the best

global optimization plan. Pipeleon first performs a local search for

each top-𝑘 pipelet (Line 1-13). Concretely, it computes all possible

options for each optimization method and then combines them

together. If certain combinations result in conflicts—e.g., a merge

option [𝑇𝐴 ,𝑇𝐵] is not compatible with a cache option [𝑇𝐶 ,𝑇𝐴]—they

will be omitted. For each valid combination, Pipeleon evaluates its

performance gain and cost by invoking the cost model (Line 11).

The results are stored in the combination attributes, cb.g and cb.c.
The evaluated combination will be added as a possible candidate

for the pipelet. Pipeleon computes the best global optimization plan

by modeling the problem as a group-based knapsack problem. Each

1: function LocalOptimize(topk_pipelets)

2: for p ∈ topk_pipelets do
3: options←{}; p.opts←{}

4: // Compute all possible options for each pipelet

5: for o ∈ opt_methods do
6: options← options ∪ GetOptions(p, o)

7: // Get all valid combinations of the options

8: combs← AllValidCombs(options)

9: // Evaluate each combination using the cost model

10: for cb ∈ combs do
11: cb.g, cb.c← GetOptGainCost(prob, cb)

12: p.opts← p.opts ∪ {cb}

13: return topk_pipelets

14: function GlobalOptimize(topk_pipelets, M, E)

15: // M and E are available memory and entry update bandwidth

16: topk_pipelets← LocalOptimize(topk_pipelets)

17: // Get the global optimal plan

18: for p ∈ topk_pipelets do
19: for m←M to 0 do
20: for e←E to 0 do
21: for o ∈ p.opts do
22: // Update the plan if the new one is better

23: if O[[m,e]-o.c].g + o.g > O[m,e].g then
24: O[m,e].g = O[[m,e]-o.c].g+ o.g

25: O[m,e].opt = o

26: return O[M, E].opt // The best plan for M and E

Figure 16: The algorithm used by Pipeleon to compute the
best optimization plan.

0 1 2 3 4
Copied tables

5

10

15

20

25

Em
u.

 p
ac

ke
t l

at
en

cy

Migration latency1
Migration latency2
Migration latency3

(a) Migration latency

0 1 2 3 4
Copied tables

5

10

15

20

25

Em
u.

 p
ac

ke
t l

at
en

cy
30% software
50% software
70% software

(b) Migration traffic ratio

Figure 17: Pipeleon can reduce the migration overhead by
copying tables to the CPU cores.

pipelet is a group, and it has several options with various gains

and costs. Our goal is to find the best way of selecting at most one

option from each pipelet to maximize the total gain while ensuring

the total cost is within the resource constraints. The function Glob-

alOptimize (Line 14-26) fulfills this task. It iterates over all pipelet

options with available resources and uses 𝑂[𝑚, 𝑒] to remember the

best plan found so far for available memory𝑚 and entry update

bandwidth 𝑒 . 𝑂[𝑚, 𝑒] will be updated whenever a better plan is

found (Line 23-25). Finally, the function returns the best plan for

the given resource limits.

A.2 Packet Migration Optimization
Pipeleon’s optimizations can be extended to heterogeneous packet

processing on ASIC/CPU cores with packet migration. The migra-

tion incurs non-negligible overhead, so Pipeleon minimizes the

Unleashing SmartNIC Packet Processing Performance in P4 ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

1.0 1.2 1.4 1.6 1.8
ESearch throughput / original throughput

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10th entropy
50th entropy
90th entropy

Figure 19: Pipeleon with ESearch has similar performance
with different traffic distributions.

1 2 3 4 5 6 7 8 9 101112
Pipelet ID

0.0

0.1

0.2

0.3

0.4

Tr
af

fic
 p

er
ce

nt
ag

e

10th entropy

1 2 3 4 5 6 7 8 9 101112
Pipelet ID

50th entropy

1 2 3 4 5 6 7 8 9 101112
Pipelet ID

90th entropy

Figure 18: The traffic distribution of a program with three
levels of entropy values. They are selected from 2000 ran-
domly generated distributions.

migration overhead with several techniques. One way is to dupli-

cate tables in the CPU cores when they are needed by the traffic

migrated to the software. We evaluated this by creating a program

with two types of tables. One type is fully supported by the ASIC

cores while the other requires CPU cores for unsupported actions.

They are interlaced with each other, so a naïve partition that puts

only unsupported actions in CPU cores will lead to multiple times

of packet migration. However, Pipeleon can reduce the needed mi-

gration by copying tables needed by the software processing at

the CPU cores. We evaluate this in our BMv2 emulator and show

the results in Figure 17. As we can see, by copying more tables to

CPU software, the average packet latency drops significantly. The

benefits increase with the migration latency and the percentage of

traffic migrating to software. Interestingly, copying only one table

in this case does not reduce the latency. This is because it does not

reduce the needed migration, and performing the copied table on

CPU cores is slower than on ASIC cores. Pipeleon will capture this

scenario automatically and avoid copying only one table.

A.3 Different Traffic Distributions
We use entropy as a metric to describe the traffic distribution across

pipelets. It is calculated over the pipelet probability distribution,

namely the portion of traffic going through the pipelet. Figure 18

shows a program’s traffic pattern of 10th, 50th, and 90th of 2000

randomly generated traffic distributions. As we can see, when en-

tropy is small (10th), traffic is more aggregated on a small portion

of pipelets. On the contrary, the traffic is distributed more evenly

when entropy is large (90th). Note that it is very hard to create

an even traffic distribution because there are always some critical

pipelets in the program receiving more traffic than others. For ex-

ample, the first pipelet connecting to the program root will always

receive 100% of traffic. And a pipelet followed by a conditional

branch will receive the sum of traffic got by each branch. Figure 19

shows the performance improvement achieved by Pipeleon with

different traffic distributions. We found that, when using ESearch,

Pipeleon can achieve similar optimization benefits. The average

throughput improvement for the three profiles is 1.32x, 1.37x, and

1.43x, respectively.

	Abstract
	1 Introduction
	2 Overview
	2.1 Unleashing SmartNIC Performance
	2.2 The Promise of Runtime PGO
	2.3 Pipeleon Overview

	3 Performance-Oriented Optimization
	3.1 Approximate P4 Performance Models
	3.2 P4 Performance Optimizations

	4 Pipelet-Based Optimization
	4.1 Top-k Pipelet Formation and Detection
	4.2 The Best Optimization Search

	5 Evaluation
	5.1 Prototype and Setup
	5.2 Benefits of the Optimizations
	5.3 Runtime Performance Optimization
	5.4 The Top-k Pipelet Optimization

	6 Discussions and Future Work
	7 Related work
	8 Conclusion
	References
	A Appendix
	A.1 The Best Optimization Search Algorithm
	A.2 Packet Migration Optimization
	A.3 Different Traffic Distributions

